首页> 外文期刊>Neurocomputing >Ultrasound image de-speckling by a hybrid deep network with transferred filtering and structural prior
【24h】

Ultrasound image de-speckling by a hybrid deep network with transferred filtering and structural prior

机译:通过传输过滤和结构的混合深网络进行超声图像去散对

获取原文
获取原文并翻译 | 示例

摘要

Deep neural-network has been widely used in natural image denoising. However, due to the lack of label of real ultrasound (US) B-mode image for de-speckling, the deep neural network is greatly restricted in US image de-speckling. In this paper, we propose to use transfer learning and two types of prior knowledge to construct a hybrid neural network structure for de-speckling. Firstly, based on a given US image model, the speckle noise is similar to Gaussian distribution in the logarithmic transformation domain, called Gaussian prior knowledge. The distribution parameters are estimated in the logarithmic transformation domain based on four typical traditional US image de-speckling methods with maximum likelihood estimation. Secondly, depending on the prior parameters, a transferable denoising network is trained with clean natural image dataset. Finally, a VGGNet is used to extract the structure boundaries before and after US image de-speckling based on the transfer network, and we call it structural prior knowledge. The structural boundaries of a US image should be unchanged after the de-speckling, and hence we use this constraint to fine-tune the transfer network. The proposed de-speckling framework is verified on artificially generated phantom (AGP) images and real US images, and the results demonstrate its effectiveness. (C) 2020 Elsevier B.V. All rights reserved.
机译:深度神经网络已被广泛用于自然图像去噪。然而,由于缺乏真实超声(US)B模式图像的标签进行解析,深度神经网络受到极大的限制在美国图像去斑点中。在本文中,我们建议使用转移学习和两种类型的先验知识来构建混合神经网络结构以进行解析。首先,基于给定的美国图像模型,散斑噪声类似于对数转换域中的高斯分布,称为高斯先前知识。基于具有最大似然估计的四种典型的传统美国图像去散探测方法,在对数转换域中估计分布参数。其次,根据现有参数,可转移的去噪网络训练,用干净的自然图像数据集接受。最后,VGGNET用于基于传输网络的US图像去散,我们将其呼叫其结构的先验知识之前和之后的结构边界。在解析出来之后,美国图像的结构边界应保持不变,因此我们使用该约束来微调传输网络。在人工产生的幻像(AGP)图像和真实的美国图像上验证了所提出的去探测框架,结果表明了其有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第13期|346-355|共10页
  • 作者单位

    South China Univ Technol Sch Elect & Informat Engn Guangzhou 510640 Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China|Northwestern Polytech Univ Sch Mech Engn Xian 710072 Peoples R China|Northwestern Polytech Univ Ctr OPT IMagery Anal & Learning OPTIMAL Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China|Northwestern Polytech Univ Ctr OPT IMagery Anal & Learning OPTIMAL Xian 710072 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    US image de-speckling; Transfer learning; Gaussian distribution prior; Structural prior; Hybrid neural network;

    机译:美国图像脱沥青;转移学习;高斯分布先前;结构事先;混合神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号