首页> 外文期刊>Neurocomputing >Wi-HSNN: A subnetwork-based encoding structure for dimension reduction and food classification via harnessing multi-CNN model high-level features
【24h】

Wi-HSNN: A subnetwork-based encoding structure for dimension reduction and food classification via harnessing multi-CNN model high-level features

机译:WI-HSNN:通过利用多CNN模型高级功能的维度减少和食品分类的基于子网的编码结构

获取原文
获取原文并翻译 | 示例

摘要

Image-based food pattern classification poses new challenges for mainstream computer vision algorithms. Recent works on feature fusion technique have significantly boosted the generalization performances of food categorization tasks. However, the use of representation learning in the training process of feature fusion has rarely been explored. This study addresses the issue through a new supervised subnetwork-based feature encoding and pattern classification model, termed a wide hierarchical subnetwork-based neural network (Wi-HSNN). In particular, Wi-HSNN is a subnet-based iterative training process in which one pair of subnets is added to the framework in each iteration. Furthermore, instead of learning the optimal representations with the whole dataset, this paper introduces a batch-by-batch parallel scheme of Wi-HSNN to process large-scale datasets, such as Place365 set with more than 1.8 million samples. Extensive evaluations on eight benchmark datasets from food classification to scene image recognition demonstrated that the proposed solution has better representation learning capacity compared to existing encoding methods, and achieves stronger performance than existing approaches for food image classification tasks. (C) 2020 Elsevier B.V. All rights reserved.
机译:基于图像的食物模式分类对主流计算机视觉算法构成了新的挑战。最近的特征融合技术的作品显着提高了食品分类任务的泛化性能。然而,在特征融合培训过程中使用表示学习已经很少被探索。本研究通过新的监督子网的特征编码和模式分类模型来解决问题,称为基于广泛的基于分层子网的神经网络(Wi-HSNN)。特别地,Wi-HSNN是基于子网的迭代训练过程,其中将一对子网添加到每个迭代中的框架中。此外,除了使用整个数据集学习最佳表示,介绍了WI-HSNN的批次并行方案,以处理大规模数据集,例如具有超过180万个样品的地点365。从食物分类到场景图像识别的八个基准数据集的广泛评估表明,与现有的编码方法相比,所提出的解决方案具有更好的表示学习能力,并且实现比食品图像分类任务的现有方法更强的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号