首页> 外文期刊>Neurocomputing >Discriminative comparison classifier for generalized zero-shot learning
【24h】

Discriminative comparison classifier for generalized zero-shot learning

机译:广义零射击学习的判别比较分类

获取原文
获取原文并翻译 | 示例

摘要

Comparison classifier based generalized zero-shot learning (GZSL) helps to achieve knowledge transfer from seen to unseen classes. However, it only utilizes the original semantic features, which are highly related and indistinguishable, to learn an embedding with no consideration of the relationship between them. Moreover, it cannot well encode discriminative information embedded in semantic features. To handle these problems, we present a discriminative comparison classifier for GZSL, which consists of semantic embedding network and relation network. Semantic embedding network takes as input original semantic features and relationship features which can be obtained by clustering, it ensures that the embedding network from semantic space to visual space can learn more discriminative features. Relation network is used to learn relationship between the embedded features and visual features, the validation information will guide embedding network to learn more discriminate features. Moreover, we adopt a novel semantic pivot regularization to keep inter-class discrimination in the visual space. Extensive experiments on several real-world datasets demonstrate the effectiveness of our method over the other state-of-the-arts. (C) 2020 Elsevier B.V. All rights reserved.
机译:基于比较的分类器的广义零射击学习(GZSL)有助于实现从看不见的类别的知识转移。然而,它只利用原始语义特征,这是高度相关和无法区分的,以学习嵌入而不考虑它们之间的关系。此外,它不能很好地编码嵌入语义特征中的鉴别信息。为了处理这些问题,我们为GZSL呈现了一种判别比较分类器,其包括语义嵌入网络和关系网络。语义嵌入网络作为输入原始语义特征和关系特征,可以通过聚类获得,确保将网络从语义空间到视觉空间的嵌入网络可以了解更多的辨别特征。关系网络用于学习嵌入功能和视觉功能之间的关系,验证信息将指导嵌入网络以了解更多的区分功能。此外,我们采用了一种新颖的语义枢轴正规化,以保持视觉空间中的阶级歧视。关于几个现实世界数据集的广泛实验证明了我们对其他最先进的方法的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第13期|10-17|共8页
  • 作者单位

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Shaanxi Peoples R China;

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Shaanxi Peoples R China;

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Shaanxi Peoples R China;

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Generalized zero-shot learning; Weakly-supervised learning; Image classification;

    机译:广义零射击学习;弱监督学习;图像分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号