首页> 外文期刊>Neurocomputing >Fusing motion patterns and key visual information for semantic event recognition in basketball videos
【24h】

Fusing motion patterns and key visual information for semantic event recognition in basketball videos

机译:篮球视频中语义事件识别的融合运动模式和关键视觉信息

获取原文
获取原文并翻译 | 示例

摘要

Many semantic events in team sport activities e.g. basketball often involve both group activities and the outcome (score or not). Motion patterns can be an effective means to identify different activities. Global and local motions have their respective emphasis on different activities, which are difficult to capture from the optical flow due to the mixture of global and local motions. Hence it calls for a more effective way to separate the global and local motions. When it comes to the specific case for basketball game analysis, the successful score for each round can be reliably detected by the appearance variation around the basket. Based on the observations, we propose a scheme to fuse global and local motion patterns (MPs) and key visual information (KVI) for semantic event recognition in basketball videos. Firstly, an algorithm is proposed to estimate the global motions from the mixed motions based on the intrinsic property of camera adjustments. And the local motions could be obtained from the mixed and global motions. Secondly, a two-stream 3D CNN framework is utilized for group activity recognition over the separated global and local motion patterns. Thirdly, the basket is detected and its appearance features are extracted through a CNN structure. The features are utilized to predict the success or failure. Finally, the group activity recognition and success/failure prediction results are integrated using the kronecker product for event recognition. Experiments on NCAA dataset demonstrate that the proposed method obtains state-of-the-art performance. (C) 2020 Elsevier B.V. All rights reserved.
机译:团队体育活动中的许多语义事件如例如。篮球往往涉及群体活动和结果(得分或不)。运动模式可以是识别不同活动的有效手段。全球和本地动议各自强调不同的活动,这难以因全球和局部运动的混合物而从光学流中捕获。因此,它要求更有效的方式来分离全球和本地运动。当涉及篮球比赛分析的特定情况时,通过篮子周围的外观变化可以可靠地检测每个圆的成功得分。基于观察,我们提出了一种在篮球视频中融合全球和局部运动模式(MPS)和关键视觉信息(KVI)的方案。首先,提出了一种算法来估计基于相机调整的内在特性来估计来自混合动作的全局运动。本地运动可以从混合和全球运动中获得。其次,通过分离的全局和局部运动模式使用两流3D CNN框架进行分组活动识别。第三,检测篮筐,并通过CNN结构提取其外观特征。这些功能用于预测成功或失败。最后,使用Kroncrecker产品进行集团活动识别和成功/故障预测结果进行事件识别。 NCAA数据集的实验表明,所提出的方法获得最先进的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第6期|217-229|共13页
  • 作者单位

    Beijing Univ Technol Beijing Peoples R China|Beijing Municipal Key Lab Computat Intelligence & Beijing Peoples R China;

    Beijing Univ Technol Beijing Peoples R China;

    Beijing Univ Technol Beijing Peoples R China;

    Beijing Univ Technol Beijing Peoples R China|Beijing Municipal Key Lab Computat Intelligence & Beijing Peoples R China;

    Beijing Univ Technol Beijing Peoples R China;

    Shanghai Jiao Tong Univ Shanghai Peoples R China;

    Chinese Univ Hong Kong Sch Sci & Engn Shenzhen Peoples R China|SUNY Buffalo Dept Comp Sci & Engn Buffalo NY USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Event classification; Sports video analysis; Global local motion separation; Motion patterns; Key visual information;

    机译:事件分类;体育视频分析;全球和本地运动分离;运动模式;关键视觉信息;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号