首页> 外文期刊>Neurocomputing >A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals
【24h】

A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals

机译:一种新的端到端1D-RESCN模型,用于从EEG信号中删除伪影

获取原文
获取原文并翻译 | 示例

摘要

Electroencephalography (EEG) signals are an important tool in the field of clinical medicine, brain research and the study of neurological diseases. EEG is very susceptible to a variety of physiological signals, which brings great difficulties to the research and analysis of EEG signals. Therefore, removing noise from EEG signals is a key prerequisite for analyzing EEG signals. In this paper, a one-dimensional residual Convolutional Neural Networks (1D-ResCNN) model for raw waveform-based EEG denoising is proposed to solve the above problem. An end-to-end (i.e. waveform in and waveform out) manner is used to map a noisy EEG signal to a clean EEG signal. In the training stage, an objective function is often adopted to optimize the model parameters and in the test stage, the trained 1D-ResCNN model is used as a filter to automatically remove noise from the contaminated EEG signal. The proposed model is evaluated on the EEG signal from the CHB-MIT Scalp EEG Database, and the added noise signals are obtained from the database. We compared the proposed model with the independent of the composite analysis (ICA), the fast independent composite analysis (FICA),Recursive least squares(RLS) filter,Wavelet Transform (WT) and Deep neural network(DNN) models. Experimental Results show that the proposed model can yield cleaner waveforms and achieve significant improvement in SNR and RMSE.Meanwhile, the proposed model can also preserve the nonlinear characteristics of EEG signals. (C) 2020 Published by Elsevier B.V.
机译:脑电图(EEG)信号是临床医学领域的重要工具,脑脑研究和神经疾病研究。 EEG非常易于各种生理信号,这对EEG信号的研究和分析带来了巨大的困难。因此,从EEG信号中移除噪声是分析EEG信号的关键前提条件。在本文中,提出了一种基于原始波形的EEG去噪的一维残余卷积神经网络(1D-RESCNN)模型,以解决上述问题。端到端(即波形和波形OUT)的方式用于将嘈杂的EEG信号映射到干净的EEG信号。在训练阶段,通常采用客观函数来优化模型参数和在测试阶段,训练的1D-RESCN模型用作滤波器,以自动去除来自受污染的EEG信号的噪声。所提出的模型在来自CHB-MIT头部EEG数据库的EEG信号上进行评估,并且从数据库中获得了附加的噪声信号。我们将所提出的模型与独立的复合分析(ICA)进行比较,快速独立的复合分析(FICA),递归最小二乘(RLS)滤波器,小波变换(WT)和深神经网络(DNN)模型。实验结果表明,该模型可以促进清洁波形并在SNR和RMSE中实现显着改善。虽然,所提出的模型还可以保留EEG信号的非线性特性。 (c)2020由elsevier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2020年第3期|108-121|共14页
  • 作者单位

    Shaanxi Normal Univ Key Lab Modern Teaching Technol Minist Educ Xian 710062 Peoples R China|Shaanxi Normal Univ Sch Comp Sci Xian 710062 Peoples R China;

    Shaanxi Normal Univ Key Lab Modern Teaching Technol Minist Educ Xian 710062 Peoples R China|Shaanxi Normal Univ Sch Comp Sci Xian 710062 Peoples R China;

    Shaanxi Normal Univ Key Lab Modern Teaching Technol Minist Educ Xian 710062 Peoples R China|Shaanxi Normal Univ Sch Comp Sci Xian 710062 Peoples R China;

    Shaanxi Normal Univ Key Lab Modern Teaching Technol Minist Educ Xian 710062 Peoples R China|Shaanxi Normal Univ Sch Comp Sci Xian 710062 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electroencephalogram (EEG); Artifacts removal; Deep learning; End-to-end; One-dimensional residual convolutional neural networks model (1D-ResCNN);

    机译:脑电图(EEG);伪影删除;深入学习;端到端;一维剩余卷积神经网络模型(1D-RESCNN);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号