首页> 外文期刊>Neurocomputing >Post-processing for intra coding through perceptual adversarial learning and progressive refinement
【24h】

Post-processing for intra coding through perceptual adversarial learning and progressive refinement

机译:通过感知对抗性学习和进步改进的术语编码后处理

获取原文
获取原文并翻译 | 示例

摘要

Video compression is an indispensable technology in image/video communications, due to its highly desirable ability to reduce the huge data volume. However, video compression introduces complex compression artifacts, such as blocking, ringing, and blurring artifacts. To reduce this issue, post-processing techniques have been extensively studied. In this paper, we propose a novel post-processing technique using multi-level progressive refinement network, which we term MPRNet. A joint training loss function is defined to optimize MPRNet via an adversarial training approach, which can boost both subjective and objective visual quality. Furthermore, our network employs progressive refine strategy, which predicts multi-level residues in one feed-forward pass. This way of coarse-to-fine refinement manner allows our network to make trade-off between refined quality and computational complexity, which facilitates the resource-aware applications. Extensive evaluations on benchmark datasets verify the superiority of our proposed MPRNet model over the latest state-of-the-art methods, achieves 8.2%, 8.3% and 9.5% of BD-rate savings for the Y/Cb/Cr channel over the HEVC baseline respectively. (C) 2019 Published by Elsevier B.V.
机译:视频压缩是图像/视频通信中不可或缺的技术,因为它非常可取的减少巨大数据量的能力。然而,视频压缩引入了复杂的压缩伪像,例如阻塞,振动和模糊伪像。为了减少这个问题,已经广泛研究了后处理技术。在本文中,我们提出了一种新的后处理技术,使用多级渐进式细化网络,We术语MPRNET。联合培训损失函数被定义为通过对抗培训方法优化MPRNET,这可以提高主观和客观的视觉质量。此外,我们的网络采用了逐步的细化策略,该策略预测了一个前馈通量的多级残基。这种粗细的细化方式的方式允许我们的网络在精细质量和计算复杂性之间进行权衡,这有助于资源感知应用程序。基准数据集的广泛评估验证了我们提出的MPRNET模型在最新的最新方法上的优势,实现了HEVC的Y / CB / CR通道的8.2%,8.3%和9.5%的BD速率节省基线分别。 (c)2019年由elestvier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2020年第21期|158-167|共10页
  • 作者单位

    Shanghai Univ Sch Commun & Informat Engn Shanghai 200444 Peoples R China|Jiaxing Vocat & Tech Coll Jiaxing 314036 Peoples R China;

    Shanghai Univ Sch Commun & Informat Engn Shanghai 200444 Peoples R China|Shanghai Univ cShanghai Inst Adv Commun & Data Sci Shanghai 200444 Peoples R China|Shanghai Univ Minist Educ Key Lab Adv Displays & Syst Applicat Shanghai 200444 Peoples R China;

    Shanghai Univ Sch Commun & Informat Engn Shanghai 200444 Peoples R China|Univ Southern Calif Dept Elect Engn Los Angeles CA 90089 USA;

    Shanghai Univ Sch Commun & Informat Engn Shanghai 200444 Peoples R China|Shanghai Univ cShanghai Inst Adv Commun & Data Sci Shanghai 200444 Peoples R China|Shanghai Univ Minist Educ Key Lab Adv Displays & Syst Applicat Shanghai 200444 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Compression artifacts reduction; In-loop filtering; Perceptual adversarial loss; High Efficiency Video Coding (HEVC);

    机译:压缩伪影减少;环绕过滤;感知对抗丧失;高效视频编码(HEVC);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号