首页> 外文期刊>Neurocomputing >Automated hepatobiliary toxicity prediction after liver stereotactic body radiation therapy with deep learning-based portal vein segmentation
【24h】

Automated hepatobiliary toxicity prediction after liver stereotactic body radiation therapy with deep learning-based portal vein segmentation

机译:基于深入学习的门静脉分割肝脏立体定向体辐射治疗后自动化肝胆毒性预测

获取原文
获取原文并翻译 | 示例

摘要

Purpose: To develop a framework for automated prediction of hepatobiliary (HB) toxicity after liver stereotactic body radiation therapy (SBRT).Materials and methods: A newly recognized toxicity type, named central or HB liver toxicity, had been reported, manifestation of which strongly correlates with the dose delivered to portal vein (PV) during SBRT. We propose a novel framework for automated HB toxicity prediction by combining deep learningbased auto-segmentation, PV anatomy analysis and the previously reported HB toxicity model. For validation of the framework, an IBR approved representative database of 72 patients treated with SBRT from primary (37) and metastatic (35) liver cancer was assembled. Each case included a pre-treatment CT, manual segmentations of tumor and PV, approved treatment plan, and the record of acute and late posttreatment toxicities. Performance of the developed framework was evaluated by quantitative comparison against manual predictions of HB toxicity, as well as post-treatment toxicity follow-ups.Results: The manual and automated predictions of HB toxicity were in agreement for 94% cases using either V-BED10 30 = 45 cc or V-BED10 40 = 37 cc dosimetric predictors. When compared to post-treatment follow-ups for primary liver cancer, the proposed automated framework made 86% and 83% correct predictions in comparison to 83% and 80% correct manual predictions using V(BED10)30 = 45 cc or V(BED10)40 = 37 cc, respectively.Conclusion: The proposed framework automates the HB toxicity prediction with the accuracy similar to manual analysis-based HB toxicity prediction. The strategy is quite general and extendable to the automated prediction of toxicities of other organs. (c) 2019 Published by Elsevier B.V.
机译:目的:为了制定肝脏立体定向体辐射治疗(SBRT)的肝胆(HB)毒性自动预测框架(SBRT)。材料和方法:据报道,新公认的毒性类型,名为Centry或Hb肝脏毒性的毒性,其表现为强烈的表现在SBRT期间与输送到门静脉(PV)的剂量相关。我们提出了一种通过组合深入学习的自动分割,光伏解剖学分析和先前报告的HB毒性模型来提出一种自动化HB毒性预测的新框架。为了验证框架,IBR批准的72名患者的IBR批准的72名患者的代表性数据库组装了来自初级(37)和转移性(35)肝癌的SBRT。每种情况包括肿瘤和PV,批准治疗计划的预治疗CT,手动分割,以及急性和晚期毒性的记录。通过针对HB毒性的手动预测的定量比较来评估发达框架的性能,以及治疗后的毒性后续ups.roults:使用V-Bed10的HB毒性的手动和自动化预测是一致的94%的病例30 = 45 CC或V型床100 = 37 CC剂量预测器。与原发性肝癌的后治疗后续相比,所提出的自动框架在使用V(床10)30 = 45cc或v(床10 )40> = 37cc。结论:所提出的框架使HB毒性预测具有类似于基于手动分析的HB毒性预测的准确性。该战略非常一般,可扩展到其他器官的毒性的自动预测。 (c)2019年由elestvier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2020年第7期|181-188|共8页
  • 作者单位

    Stanford Univ Dept Radiat Oncol 875 Blake Wilbur Dr Palo Alto CA 94305 USA|Univ Copenhagen Dept Univ Comp Sci Univ Pk 5 DK-2100 Copenhagen Denmark;

    Stanford Univ Dept Radiat Oncol 875 Blake Wilbur Dr Palo Alto CA 94305 USA;

    Stanford Univ Dept Radiat Oncol 875 Blake Wilbur Dr Palo Alto CA 94305 USA;

    City Univ Hong Kong Dept Elect Engn Kowloon Tong 83 Tat Chee Ave Hong Kong Peoples R China;

    Univ Texas MD Anderson Canc Ctr Dept Radiat Oncol 1515 Holcombe Blvd Houston TX 77030 USA;

    Stanford Univ Dept Radiat Oncol 875 Blake Wilbur Dr Palo Alto CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Toxicity prediction; Primary liver cancer; SBRT; Deep learning;

    机译:毒性预测;原发性肝癌;SBRT;深度学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号