首页> 外文期刊>Neurocomputing >Multilayer probability extreme learning machine for device-free localization
【24h】

Multilayer probability extreme learning machine for device-free localization

机译:无限层概率极限学习机,用于无设备定位

获取原文
获取原文并翻译 | 示例

摘要

Device-free localization (DFL) is becoming one of the new techniques in wireless localization field, due to its advantage that the target to be localized does not need to attach any electronic device. One of the key issues of DFL is how to characterize the influence of the target on the wireless links, such that the target's location can be accurately estimated by analyzing the changes of the signals of the links. Most of the existing related research works usually extract the useful information from the links through manual approaches, which are labor-intensive and time-consuming. Deep learning approaches have attempted to automatically extract the useful information from the links, but the training of the conventional deep learning approaches are time-consuming, because a large number of parameters need to be fine-tuned multiple times. Motivated by the fast learning speed and excellent generalization performance of extreme learning machine (ELM), which is an emerging training approach for generalized single hidden layer feed-forward neural networks (SLFNs), this paper proposes a novel hierarchical ELM based on deep learning theory, named multilayer probability ELM (MP-ELM), for automatically extracting the useful information from the links, and implementing fast and accurate DFL. The proposed MP-ELM is stacked by ELM autoencoders, so it also keeps the very fast learning speed of ELM. In addition, considering the uncertainty and redundant links existing in DFL, MP-ELM outputs the probabilistic estimation of the target's location instead of the deterministic output. The validity of the proposed MP-ELM-based DFL is evaluated both in the indoor and the outdoor environments, respectively. Experimental results demonstrate that the proposed MP-ELM can obtain better performance compared with classic ELM, multilayer ELM (ML-ELM), hierarchical ELM (H-ELM), deep belief network (DBN), and deep Boltzmann machine (DBM). (C) 2019 Elsevier B.V. All rights reserved.
机译:无设备定位(DFL)正在成为无线定位领域的新技术之一,因为其优点是要定位的目标不需要附加任何电子设备。 DFL的关键问题之一是如何表征目标对无线链路对无线链路的影响,使得通过分析链路的信号的变化,可以精确地估计目标位置。大多数现有相关研究工作通常通过手动方法从链接中提取有用信息,这是劳动密集型和耗时的。深度学习方法已经尝试从链接中提取有用的信息,但传统的深度学习方法的培训是耗时的,因为大量参数需要多次进行微调。通过快速学习速度和极端学习机(ELM)的优异概括性性能,这是一种新兴的单层隐藏层前馈神经网络(SLFN)的新兴训练方法,本文提出了一种基于深度学习理论的新型榆树,命名多层概率ELM(MP-ELM),用于自动从链接中提取有用的信息,实现快速准确的DFL。所提出的MP-ELM由ELM AutoEncoders堆叠,因此它还保持了ELM的非常快速的学习速度。此外,考虑到DFL中存在的不确定性和冗余链接,MP-ELM输出目标位置的概率估计而不是确定性输出。所提出的基于MP-ELM的DFL的有效性分别在室内和室外环境中进行评估。实验结果表明,与经典的ELM,多层ELM(ML-ELM),分层ELM(H-ELM),深度信仰网络(DBN)和深螺栓德曼机(DBM)相比,所提出的MP-ELM可以获得更好的性能。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第jul5期|383-393|共11页
  • 作者单位

    Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China|Beijing Engn Res Ctr Ind Spectrum Imaging Beijing 100083 Peoples R China;

    Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China|Beijing Engn Res Ctr Ind Spectrum Imaging Beijing 100083 Peoples R China;

    Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China|Beijing Engn Res Ctr Ind Spectrum Imaging Beijing 100083 Peoples R China;

    Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China|Beijing Engn Res Ctr Ind Spectrum Imaging Beijing 100083 Peoples R China;

    Univ Leeds Sch Elect & Elect Engn Leeds LS2 9JT W Yorkshire England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Device-free localization; Extreme learning machine; Extreme learning machine autoencoder; Multilayer probability extreme learning machine;

    机译:无设备本地化;极端学习机;极端学习机器自动化器;多层概率极限学习机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号