首页> 外文期刊>Neurocomputing >RNN-GWR: A geographically weighted regression approach for frequently updated data
【24h】

RNN-GWR: A geographically weighted regression approach for frequently updated data

机译:RNN-GWR:用于经常更新数据的地理加权回归方法

获取原文
获取原文并翻译 | 示例

摘要

Geographically weighted regression (GWR) is a local spatial regression technique to model varying relationships in many application domains, such as ecology, environmental management, public health, meteorology, and tourism. In the literature, most of the studies dealing with GWR do not take into account if the dataset is frequently updated and so these techniques are not efficient to handle such datasets. In this study, to handle frequently updated data on given locations, a computationally efficient GWR approach, RNN-GWR, which utilizes reverse nearest neighbor (RNN) strategy, is proposed. The performance of the proposed RNN-GWR approach is compared with the performances of a Naive-GWR and FastGWR approaches. Experimental evaluations show that the proposed approach is computationally efficient than the other approaches on handling frequently updated data. (c) 2020 Elsevier B.V. All rights reserved.
机译:地理加权回归(GWR)是一种局部空间回归技术,可以在许多应用领域中建模不同的关系,例如生态,环境管理,公共卫生,气象学和旅游业。在文献中,如果经常更新数据集,则处理GWR的大多数处理GWR的研究不会考虑,因此这些技术不高效地处理此类数据集。在本研究中,为了处理给定位置的经常更新的数据,提出了利用反向最近邻(RNN)策略的计算效率高效的GWR方法RNN-GWR。将提出的RNN-GWR方法的性能与Naive-GWR和FastGWR方法的性能进行比较。实验评估表明,该方法是计算效率高于处理频繁更新数据的其他方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号