首页> 外文期刊>Neurocomputing >Real-time gesture recognition based on feature recalibration network with multi-scale information
【24h】

Real-time gesture recognition based on feature recalibration network with multi-scale information

机译:基于具有多尺度信息的特征重新校准网络的实时手势识别

获取原文
获取原文并翻译 | 示例

摘要

Gesture recognition is important in human-machine interaction. Current methods for solving gesture recognition have several disadvantages such as low recognition rate, slow speed and poor performance on recognizing multiple targets or long-distance targets in complex environments. In view of the above problems, we propose a gesture recognition approach that can recognize gestures quickly and accurately from complex background. This approach works on a deep convolutional network, which consists of a basic network module for extracting feature information, a squeeze-and-excitation networks for increasing feature channel affinity and a feature pyramid attention module for fusing context information with different scales. To test the proposed approach, we make a data set that contains 3289 images from difference complex scenes. Generally gestures in those images can be generally classified into 16 types. We have uploaded this data set for researchers use. Experimental results demonstrate that the recognition accuracy and speed of the proposed method can achieve 83.45% and 32.2 frames per second respectively, which has better comprehensive performance compared with other state-of-the-art recognition algorithms. (C) 2019 Elsevier B.V. All rights reserved.
机译:手势识别在人机相互作用中很重要。求解手势识别的当前方法具有若干缺点,例如低识别率,慢速和差的性能,在复杂环境中识别多个目标或长距离目标。鉴于上述问题,我们提出了一种手势识别方法,可以从复杂的背景中快速准确地识别手势。这种方法在深度卷积网络上工作,该网络由基本的网络模块组成,用于提取特征信息,用于增加特征信道亲和力的挤压和激励网络,以及用于融合具有不同尺度的上下文信息的特征金字塔注意模块。要测试所提出的方法,我们会制作一个数据集,其中包含差异复杂场景的3289张图像。通常,这些图像中的手势通常可以分为16种类型。我们已经上传了研究人员使用的此数据集。实验结果表明,拟议方法的识别精度和速度分别可以达到每秒83.45%和32.2帧,与其他最先进的识别算法相比具有更好的全面性能。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第28期|119-130|共12页
  • 作者单位

    Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 100029 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Gesture recognition; Human-machine interaction; Deep convolutional network; Contextual information;

    机译:手势识别;人机互动;深卷积网络;语境信息;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号