首页> 外文期刊>Neurocomputing >A novel scene classification model combining ResNet based transfer learning and data augmentation with a filter
【24h】

A novel scene classification model combining ResNet based transfer learning and data augmentation with a filter

机译:基于Reset的转移学习和滤波器的数据增强组合的新颖场景分类模型

获取原文
获取原文并翻译 | 示例

摘要

Scene classification is a significant aspect of computer vision. Convolutional neural networks (CNNs), a development of deep learning, are a well-understood tool for image classification. But training CNNs requires large-scale datasets. Transfer learning addresses this problem and produces a solution for smallscale datasets. Because scene image classification is more complex than common image classification. We propose a novel ResNet based transfer learning model utilizing multi-layer feature fusion, taking full advantage of interlayer discriminating features and fusing them for classification by softmax regression. In addition, a novel data augmentation method with a filter useful for small-scale datasets is presented. New image patches are generated by sliding block cropping of a raw image, which are then filtered to insure that the new images sufficiently represent the original categorization. Our new ResNet based transfer learning model with enhanced data augmentation is evaluated on six benchmark scene datasets (LF, OT, FP, LS, MIT67, SUN397). Extensive experimental results show that on the six datasets our method obtains better accuracy than other state-of-the-art models. (c) 2019 Elsevier B.V. All rights reserved.
机译:场景分类是计算机愿景的重要方面。卷积神经网络(CNNS)是深度学习的发展,是一个很好的图像分类工具。但培训CNNS需要大规模的数据集。转移学习解决了这个问题,并为小型数据集产生了解决方案。因为场景图像分类比公共图像分类更复杂。我们提出了一种利用多层特征融合的基于Reset基于Reset的转移学习模型,充分利用层间区分特征,并融合它们通过Softmax回归进行分类。此外,还提出了一种具有用于小尺度数据集的过滤器的新型数据增强方法。通过滑动块裁剪生成新的图像修补程序,然后将其滤波,以确保新图像充分代表原始分类。我们的新Reset基于Reset的转移学习模型,具有增强的数据增强,在六个基准场景数据集(LF,OT,FP,LS,MIT67,Sun397)上进行评估。广泛的实验结果表明,在六个数据集上,我们的方法获得比其他最先进的模型更好的准确性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第21期|191-206|共16页
  • 作者单位

    Shandong Univ Sch Control Sci & Engn Jinan Shandong Peoples R China;

    Shandong Univ Sch Control Sci & Engn Jinan Shandong Peoples R China;

    Shandong Univ Sch Control Sci & Engn Jinan Shandong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Scene classification; Transfer learning; ResNet; Data augmentation; CNN;

    机译:场景分类;转移学习;reset;数据增强;CNN;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号