首页> 外文期刊>Neurocomputing >Ranking nodes in complex networks based on local structure and improving closeness centrality
【24h】

Ranking nodes in complex networks based on local structure and improving closeness centrality

机译:基于本地结构的复杂网络中的排名节点,提高了近的中心

获取原文
获取原文并翻译 | 示例

摘要

In complex networks, the nodes with most spreading ability are called influential nodes. In many applications such as viral marketing, identification of most influential nodes and ranking them based on their spreading ability is of vital importance. Closeness centrality is one of the most commonly used methods to identify influential spreaders in social networks. However, this method is time-consuming for dynamic large-scale networks and has high computational complexity. In this paper, we propose a novel ranking algorithm which improves closeness centrality by taking advantage of local structure of nodes and aims to decrease the computational complexity. In our proposed method, at first, a community detection algorithm is applied to extract community structures of the network. Thereafter, after ignoring the relationship between communities, one best node as local critical node for each community is extracted according to any centrality measure. Then, with the consideration of interconnection links between communities, another best node as gateway node is found. Finally, the nodes are sorted and ranked based on computing the sum of the shortest path length of nodes to obtained critical nodes. Our method can detect the most spreader nodes with high diffusion ability and low time complexity, which make it appropriately applicable to large-scale networks. Experiments on synthetic and real-world connected networks under common diffusion models demonstrate the effectiveness of our proposed method in comparison with other methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:在复杂的网络中,具有大多数扩散能力的节点称为有影响力的节点。在许多诸如病毒营销的应用中,确定最有影响力的节点并根据其传播能力排列它们是至关重要的。接近中心是识别社交网络中有影响力的扩展者的最常用方法之一。然而,这种方法对于动态大规模网络而耗时,并且具有高计算复杂性。在本文中,我们提出了一种新的排名算法,它通过利用节点的局部结构来提高近密度数,并旨在降低计算复杂性。在我们所提出的方法中,首先,应用了社区检测算法来提取网络的社区结构。此后,在忽略社区之间的关系之后,根据任何中心度测量提取一个最佳节点作为每个社区的本地关键节点。然后,随着社区之间的互连链路,找到另一个最佳节点作为网关节点。最后,基于计算节点的最短路径长度的总和来对节点进行排序和排序,以获得关键节点。我们的方法可以检测具有高扩散能力和低时间复杂度的最大展位节点,这使得适用于大规模网络。普通扩散模型下合成和实际连接网络的实验证明了我们提出的方法与其他方法相比的有效性。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号