首页> 外文期刊>Neurocomputing >Multi-exposure high dynamic range imaging with informative content enhanced network
【24h】

Multi-exposure high dynamic range imaging with informative content enhanced network

机译:具有信息内容增强网络的多曝光高动态范围成像

获取原文
获取原文并翻译 | 示例

摘要

For High Dynamic Range (HDR) imaging systems, a new multi-exposure HDR imaging method based on Informative Content Enhanced Network (ICEN) is proposed to overcome the disadvantage that the existing deep learning based methods fails to fully exploit the differently exposed Low Dynamic Range (LDR) image contents to recover the details of the under/over-exposed regions. Specifically, the key contents in differently exposed LDR images that contribute to HDR imaging are firstly defined as Informative Contents (ICs). Then, the ICs are enhanced by the proposed Residual Channel Attention Module (RCAM), and then fused to generate HDR image. Furthermore, a generation scheme is designed for constructing HDR image labels and producing a multi-exposure HDR imaging dataset for training the proposed ICEN. The experimental results show that the proposed method is superior to the existing HDR imaging methods in quantitative and qualitative analysis, and can quickly generate high-quality HDR images. (c) 2019 Elsevier B.V. All rights reserved.
机译:针对高动态范围(HDR)成像系统,提出了一种新的基于信息内容增强网络(ICEN)的多曝光HDR成像方法,以克服现有基于深度学习的方法无法充分利用不同曝光的低动态范围的缺点。 (LDR)图像内容以恢复曝光不足/曝光过度区域的细节。具体而言,首先将有助于HDR成像的不同曝光LDR图像中的关键内容定义为信息内容(IC)。然后,通过建议的残留通道注意模块(RCAM)增强IC,然后融合以生成HDR图像。此外,设计了一种生成方案,用于构造HDR图像标签并生成用于曝光提议的ICEN的多曝光HDR成像数据集。实验结果表明,该方法在定量和定性分析方面优于现有的HDR成像方法,并且可以快速生成高质量的HDR图像。 (c)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号