首页> 外文期刊>Neurocomputing >Designing non-linear minimax and related discriminants by disjoint tangent configurations applied to RBF networks
【24h】

Designing non-linear minimax and related discriminants by disjoint tangent configurations applied to RBF networks

机译:通过应用于RBF网络的不相交切线配置设计非线性极小值和相关判别式

获取原文
获取原文并翻译 | 示例

摘要

Non-linear classification machines seldom are trained under criteria that are usual and useful for linear discriminants, such as minimax, Fisher's, and other similar criteria. The reason is the learning difficulties that transformation-trainable machines suffer when applying such criteria. However, the possibility of using non-linear machines whose transformations are pre-designed merits attention.In this contribution, we propose and study an efficient and potentially effective option: Applying Disjoint Tangent Configurations (DTC), a formulation that includes discriminants such as Fisher's, Bayes for normal distributions, Minimax Probabilistic Decision Hyperplane (MPDH), and others, to the output of a Radial Basis Function (RBF) network which has been previously designed with a moderate number of nodes to reduce the computational load, but with a high quality centroid selection algorithm, Frequency Sensitive Competitive Learning (FSCL), which allows to obtain networks with high representation capabilities. Experiments demonstrate that this approach leads to good performance results with acceptable computational efforts. (C) 2019 Elsevier B.V. All rights reserved.
机译:非线性分类机很少在线性判别式常用且有用的准则下进行训练,例如最小极大值,费舍尔准则和其他类似准则。原因是在应用此类标准时,可转换训练的机器会遇到学习困难。但是,使用经过预先设计的变换的非线性机器的可能性值得关注。在此贡献中,我们提出并研究了一种有效且可能有效的选择:应用不相交切线构型(DTC),该表述包含诸如Fisher ,贝叶斯用于正态分布,Minimax概率决策超平面(MPDH)等到径向基函数(RBF)网络的输出,该网络先前已设计成具有中等数量的节点以减少计算量,但具有较高的质量质心选择算法,频率敏感竞争学习(FSCL),可以获取具有较高表示能力的网络。实验表明,这种方法在可接受的计算努力下可获得良好的性能结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号