首页> 外文期刊>Neurocomputing >High-order fuzzy clustering algorithm based on multikernel mean shift
【24h】

High-order fuzzy clustering algorithm based on multikernel mean shift

机译:基于多核均值漂移的高阶模糊聚类算法

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a method of constructing multikernel space to ensure the integrity of the original data in which the multikernel space aims to reduce the computational complexity of multidimensional data and is suitable for the processing of relational data. The high-dimensional samples of the original space are therefore mapped into a high-dimensional kernel feature space to obtain the inner product. However, when the dimensions of the feature space for multikernel is extremely high or even infinite, the inner product is difficult to calculate directly. To overcome these limitations, this study further proposes a high-order fuzzy clustering (HoFC) algorithm called multikernel mean shift (MKMS-HoFC), which incorporates mean shift based on multikernel space to divide the data and expand the original dimension into multiple new dimensions in the high-dimensional kernel feature space. The MKMS-HoFC initially maps the input points into a high-dimensional feature space of the multikernel and constructs a separating hyper-plane that maximizes the margin among multiple clusters in this space. The multikernel then finds the optimal hyper-plane by HoFC. This method iteratively searches for the densest regions of the sample points in the feature space and improves the clustering performance by using the multidimensional commensurability of HoFC. Real datasets are used to analyze the quality of clustering. Experimental results and comparisons demonstrate the excellent performances of MKMS-HoFC with its effectiveness in practice. (C) 2019 Elsevier B.V. All rights reserved.
机译:这项研究提出了一种构造多核空间以确保原始数据的完整性的方法,其中多核空间旨在降低多维数据的计算复杂度,并适合于关系数据的处理。因此,将原始空间的高维样本映射到高维核特征空间中以获得内积。但是,当多核特征空间的尺寸非常高甚至无限时,很难直接计算内部乘积。为了克服这些限制,本研究进一步提出了一种称为多核均值漂移(MKMS-HoFC)的高阶模糊聚类(HoFC)算法,该算法结合了基于多核空间的均值漂移来划分数据并将原始维扩展为多个新维在高维内核特征空间中。 MKMS-HoFC最初将输入点映射到多核的高维特征空间,并构造一个分离的超平面,该平面使该空间中多个群集之间的裕度最大化。然后,多内核通过HoFC找到最佳超平面。该方法迭代搜索特征空间中样本点的最密集区域,并通过使用HoFC的多维可比性来提高聚类性能。实际数据集用于分析聚类的质量。实验结果和比较证明了MKMS-HoFC的出色性能及其在实践中的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第14期|63-79|共17页
  • 作者

  • 作者单位

    East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multikernel; Mean shift; High-order; Commensurability; Fuzzy clustering; Hyper-plane;

    机译:多内核;平均移动高阶相通性;模糊聚类;超平面;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号