首页> 外文期刊>Neurocomputing >A novel statistical analysis and autoencoder driven intelligent intrusion detection approach
【24h】

A novel statistical analysis and autoencoder driven intelligent intrusion detection approach

机译:一种新颖的统计分析和自动编码器驱动的智能入侵检测方法

获取原文
获取原文并翻译 | 示例

摘要

In the current digital era, one of the most critical and challenging issues is ensuring cybersecurity in information technology (IT) infrastructures. With significant improvements in technology, hackers have been developing ever more complex and dangerous malware attacks that make intrusion recognition a very difficult task. In this context, traditional analytical tools are facing severe challenges to detect and mitigate these threats. In this work, we introduce a novel statistical analysis and autoencoder (AE) driven intelligent intrusion detection system (IDS). Specifically, the proposed IDS combines data analytics and statistical techniques with recent advances in machine learning theory to extract more optimized, strongly correlated features. The proposed IDS is evaluated using the benchmark NSL-KDD database. Comparative experimental results show that the designed statistical analysis and AE based IDS achieves better classification performance compared to conventional deep and shallow machine learning and other recently proposed state-of-the-art techniques. Crown Copyright (C) 2019 Published by Elsevier B.V. All rights reserved.
机译:在当前的数字时代,最关键和最具挑战性的问题之一是确保信息技术(IT)基础架构中的网络安全。随着技术的显着改进,黑客一直在开发更加复杂和危险的恶意软件攻击,这些攻击使入侵识别成为一项非常艰巨的任务。在这种情况下,传统的分析工具在检测和减轻这些威胁方面面临严峻挑战。在这项工作中,我们介绍了一种新颖的统计分析和自动编码器(AE)驱动的智能入侵检测系统(IDS)。具体而言,提出的IDS将数据分析和统计技术与机器学习理论的最新进展相结合,以提取更多优化的,高度相关的特征。建议的IDS是使用基准NSL-KDD数据库进行评估的。对比实验结果表明,与传统的深度和浅层机器学习以及其他最近提出的最新技术相比,所设计的统计分析和基于AE的IDS具有更好的分类性能。官方版权(C)2019由Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第28期|51-62|共12页
  • 作者

  • 作者单位

    Univ Mediterranea Reggio Calabria DICEAM Via Graziella I-89060 Reggio Di Calabria Italy;

    Univ Wolverhampton Sch Math & Comp Sci Wolverhampton WV1 1LY England;

    Edinburgh Napier Univ Sch Comp Edinburgh EH10 5DT Midlothian Scotland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anomaly detection; Deep learning; Autoencoder; Optimized features extraction; NSL-KDD database;

    机译:异常检测;深度学习;自动编码器;优化特征提取;NSL-KDD数据库;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号