首页> 外文期刊>Neurocomputing >Integration of an actor-critic model and generative adversarial networks for a Chinese calligraphy robot
【24h】

Integration of an actor-critic model and generative adversarial networks for a Chinese calligraphy robot

机译:中国书法机器人的行为批评模型与生成对抗网络的集成

获取原文
获取原文并翻译 | 示例

摘要

As a combination of robotic motion planning and Chinese calligraphy culture, robotic calligraphy plays a significant role in the inheritance and education of Chinese calligraphy culture. Most existing calligraphy robots focus on enabling the robots to learn writing through human participation, such as human-robot interactions and manually designed evaluation functions. However, because of the subjectivity of art aesthetics, these existing methods require a large amount of implementation work from human engineers. In addition, the written results cannot be accurately evaluated. To overcome these limitations, in this paper, we propose a robotic calligraphy model that combines a generative adversarial network (GAN) and deep reinforcement learning to enable a calligraphy robot to learn to write Chinese character strokes directly from images captured from Chinese calligraphic textbooks. In our proposed model, to automatically establish an aesthetic evaluation system for Chinese calligraphy, a GAN is first trained to understand and reconstruct stroke images. Then, the discriminator network is independently extracted from the trained GAN and embedded into a variant of the reinforcement learning method, the "actor-critic model", as a reward function. Thus, a calligraphy robot adopts the improved actor-critic model to learn to write multiple character strokes. The experimental results demonstrate that the proposed model successfully allows a calligraphy robot to write Chinese character strokes based on input stroke images. The performance of our model, compared with the state-of-the-art deep reinforcement learning method, shows the efficacy of the combination approach. In addition, the key technology in this work shows promise as a solution for robotic autonomous assembly. (C) 2020 Elsevier B.V. All rights reserved.
机译:作为机器人运动计划与中国书法文化的结合,机器人书法在中国书法文化的传承和教育中发挥着重要作用。现有的大多数书法机器人都致力于使机器人能够通过人类参与来学习书写,例如人机交互和手动设计的评估功能。然而,由于艺术美学的主观性,这些现有方法需要人类工程师进行大量的实施工作。此外,书面结果无法准确评估。为了克服这些限制,在本文中,我们提出了一种机器人书法模型,该模型结合了生成对抗网络(GAN)和深度强化学习,使书法机器人可以学习直接从中国书法教科书中捕获的图像来书写汉字笔画。在我们提出的模型中,为了自动建立中国书法的美学评估系统,首先要训练GAN来理解和重建笔画图像。然后,从受过训练的GAN中独立提取判别器网络,并将其嵌入到强化学习方法的一种变体中,即“行为者评论模型”,作为奖励函数。因此,书法机器人采用改进的行为者评论模型来学习书写多个字符笔划。实验结果表明,该模型成功地使书法机器人能够基于输入的笔划图像来书写汉字笔划。与最新的深度强化学习方法相比,我们模型的性能表明了组合方法的有效性。此外,这项工作中的关键技术显示出有望成为机器人自主装配的解决方案。 (C)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第may7期|12-23|共12页
  • 作者

  • 作者单位

    Xiamen Univ Sch Informat Dept Artificial Intelligence Xiamen 361005 Peoples R China;

    Xiamen Univ Sch Informat Dept Artificial Intelligence Xiamen 361005 Peoples R China|Aberystwyth Univ Dept Comp Sci Aberystwyth Dyfed Wales;

    Northumbria Univ Comp Sci & Digital Technol Dept Newcastle Upon Tyne Tyne & Wear England;

    Yuan Ze Univ Dept Elect Engn Taoyuan Taiwan;

    Aberystwyth Univ Dept Comp Sci Aberystwyth Dyfed Wales;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Robotic calligraphy; Motion planning; Deep reinforcement learning; Generative adversarial nets; Robot control;

    机译:机器人书法运动计划;深度强化学习;生成对抗网;机械手控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号