首页> 外文期刊>Neurocomputing >Joint extraction of entities and relations by a novel end-to-end model with a double-pointer module
【24h】

Joint extraction of entities and relations by a novel end-to-end model with a double-pointer module

机译:通过带有双指针模块的新型端到端模型联合提取实体和关系

获取原文
获取原文并翻译 | 示例

摘要

Joint extraction of entities and relations is to detect entities and recognize semantic relations simultaneously. However, some existing joint models predict relations on words, instead of entities. These models cannot make full use of the entity information when predicting relations, which will affect relation extraction. We propose an end-to-end model with a double-pointer module that can jointly extract whole entities and relations. The double-pointer module is combined with multiple decoders to predict the start and end positions of the entity in the input sentence. In addition, in order to learn the relevance between long-distance entities effectively, the multi-layer convolution and self-attention mechanism are used as an encoder, instead of Bi-RNN. We conduct experiments on two public datasets and our models outperform the baseline methods significantly. (c) 2019 Elsevier B.V. All rights reserved.
机译:实体和关系的联合提取是检测实体并同时识别语义关系。但是,一些现有的联合模型预测的是单词而不是实体的关系。这些模型在预测关系时无法充分利用实体信息,这会影响关系提取。我们提出了一个带有双指针模块的端到端模型,该模块可以联合提取整个实体和关系。双指针模块与多个解码器组合以预测实体在输入语句中的开始和结束位置。另外,为了有效地学习长距离实体之间的相关性,使用了多层卷积和自注意机制作为编码器,而不是Bi-RNN。我们在两个公共数据集上进行了实验,我们的模型明显优于基线方法。 (c)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号