首页> 外文期刊>Neurocomputing >Automatic segmentation of retinal layer boundaries in OCT images using multiscale convolutional neural network and graph search
【24h】

Automatic segmentation of retinal layer boundaries in OCT images using multiscale convolutional neural network and graph search

机译:使用多尺度卷积神经网络和图搜索自动分割OCT图像中的视网膜层边界

获取原文
获取原文并翻译 | 示例

摘要

Accurate quantitative analysis of the retinal layer in optical coherence tomography (OCT) images plays a crucial role in detecting and diagnosing ocular diseases. In this paper, we present a novel automatic method by combining multiscale convolutional neural network (MCNN) and graph search to accurately segment multiple retinal layer boundaries in OCT images. Firstly, we propose a MCNN architecture to extract multiscale features of retinal layer boundaries and thus to produce probability maps of the retinal layer boundaries. Especially, we construct a MCNN architecture by fusing feature maps extracted from different sizes of input image patches to learn multiscale information about the retinal layer boundaries. Meanwhile, we distinguish the background pixels based on the location information to reduce the probability that the network misclassifies the background as a target. Furthermore, we propose an improved graph search algorithm to detect the final layer boundaries from the probability maps. Finally, we evaluate our proposed method with eight state-of-the-art approaches on a publicly OCT dataset with age-related macular degeneration (AMD). The experimental results demonstrate that the proposed method outperforms other state-of-the-art approaches in terms of quantitative results and visual effects. (C) 2019 Elsevier B.V. All rights reserved.
机译:光学相干断层扫描(OCT)图像中视网膜层的准确定量分析在眼病的检测和诊断中起着至关重要的作用。在本文中,我们提出了一种新颖的自动方法,该方法结合了多尺度卷积神经网络(MCNN)和图搜索来准确地分割OCT图像中的多个视网膜层边界。首先,我们提出了一种MCNN体系结构来提取视网膜层边界的多尺度特征,从而生成视网膜层边界的概率图。特别是,我们通过融合从不同大小的输入图像斑块中提取的特征图来构造MCNN体系结构,以学习有关视网膜层边界的多尺度信息。同时,我们根据位置信息区分背景像素,以减少网络将背景误分类为目标的可能性。此外,我们提出了一种改进的图搜索算法,以从概率图中检测出最终的层边界。最后,我们在具有年龄相关性黄斑变性(AMD)的公开OCT数据集上使用八种最新方法评估了我们提出的方法。实验结果表明,该方法在定量结果和视觉效果方面均优于其他最新方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号