首页> 外文期刊>Neurocomputing >Stacked dense networks for single-image snow removal
【24h】

Stacked dense networks for single-image snow removal

机译:堆叠密集网络用于单幅除雪

获取原文
获取原文并翻译 | 示例

摘要

Single image snow removal is important since snowy images usually degrade the performance of computer vision systems. In this paper, we deduce a physics-based snow model and propose a novel snow removal method based on the snow model and deep neural networks. Our model decomposes a snowy image into a nonlinear combination of a snow-free image and dynamic snowflakes. Inspired by our model and DenseNet connectivity pattern, we design a novel Multi-scale Stacked Densely Connected Convolutional Network (MS-SDN) to simultaneously detect and remove snowflakes in an image. The MS-SDN is composed of a multi-scale convolutional sub-net for extracting feature maps and two stacked modified DenseNets for snowflakes detection and removal. The snowflake detection sub-net guides snow removal through forward transmission, and the snowflake removal sub-net adjusts snow detection through back transmission. In this way, snowflake detection and removal mutually improve the final results. For training and testing our method, we constructed a large-scale benchmark synthesis dataset which contains 3000 triplets of snowy images, snowflakes, and snow-free images. Specifically, the snow-free images are captured from snow scenes, and the snowy images are synthesized by using our deduced snow model. Our extensive quantitative and qualitative experimental results show that our MS-SDN performs better than several state-of-the-art methods, and the stacked structure is better than multi-branch structures in terms of snow removal. (C) 2019 Elsevier B.V. All rights reserved.
机译:单图像除雪非常重要,因为雪图像通常会降低计算机视觉系统的性能。在本文中,我们推导了基于物理学的降雪模型,并提出了一种基于降雪模型和深度神经网络的除雪方法。我们的模型将下雪图像分解为无雪图像和动态雪花的非线性组合。受我们的模型和DenseNet连接模式的启发,我们设计了一种新颖的多尺度堆叠密集连接卷积网络(MS-SDN),可以同时检测和去除图像中的雪花。 MS-SDN由一个用于提取特征图的多尺度卷积子网和两个用于雪花检测和去除的堆叠式修改后的DenseNet组成。雪花检测子网通过前向传输引导除雪,而雪花去除子网通过后向传输调整除雪。这样,雪花检测和去除可以相互改善最终结果。为了训练和测试我们的方法,我们构建了一个大型基准合成数据集,其中包含3000张三重雪图像,雪花和无雪图像。具体而言,从雪景中捕获无雪图像,并使用我们推导出的雪模型合成雪图像。我们广泛的定量和定性实验结果表明,我们的MS-SDN的性能优于几种最先进的方法,并且在除雪方面,堆叠结构优于多分支结构。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第20期|152-163|共12页
  • 作者单位

    Northeastern Univ Fac Robot Sci & Engn Shenyang Liaoning Peoples R China|Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Beijing Peoples R China|Chinese Acad Sci Inst Robot & Intelligent Mfg Beijing Peoples R China;

    Univ Illinois Coll Engn Urbana IL USA;

    Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Beijing Peoples R China|Chinese Acad Sci Inst Robot & Intelligent Mfg Beijing Peoples R China;

    Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Beijing Peoples R China|Chinese Acad Sci Inst Robot & Intelligent Mfg Beijing Peoples R China|Univ Chinese Acad Sci Beijing Peoples R China;

    Northeastern Univ Fac Robot Sci & Engn Shenyang Liaoning Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Snow removal; Single image; Stacked dense networks; Image restoration;

    机译:除雪;单张图片;堆叠密集的网络;影像还原;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号