首页> 外文期刊>Neurocomputing >Global and local multi-view multi-label learning
【24h】

Global and local multi-view multi-label learning

机译:全局和局部多视图多标签学习

获取原文
获取原文并翻译 | 示例

摘要

In order to process multi-view multi-label data sets, we propose global and local multi-view multi-label learning (GLMVML). This method can exploit global and local label correlations of both the whole data set and each view simultaneously. What's more, GLMVML introduces a consensus multi-view representation which encodes the complementary information from different views. Related experiments on three multi-view data sets, fourteen multi-label data sets, and one multi-view multi-label data set have validated that (1) GLMVML has a better average AUC and precision and it is superior to the classical multi-view learning methods and multi-label learning methods in statistical; (2) the running time of GLMVML won't add too much; (3) GLMVML has a good convergence and ability to process multi-view multi-label data sets; (4) since the model of GLMVML consists of both the global label correlations and local label correlations, so parameter values should be moderate rather than too large or too small. (C) 2019 Elsevier B.V. All rights reserved.
机译:为了处理多视图多标签数据集,我们提出了全局和局部多视图多标签学习(GLMVML)。这种方法可以同时利用整个数据集和每个视图的全局和局部标签相关性。此外,GLMVML引入了一种共识性多视图表示形式,该表示形式对来自不同视图的补充信息进行编码。在3个多视图数据集,14个多标签数据集和1个多视图多标签数据集上进行的相关实验已验证:(1)GLMVML具有更好的平均AUC和精度,并且优于经典的多视图数据集。在统计中查看学习方法和多标签学习方法; (2)GLMVML的运行时间不会增加太多; (3)GLMVML具有良好的收敛性和处理多视图多标签数据集的能力; (4)由于GLMVML模型既包含全局标签相关性又包含局部标签相关性,因此参数值应适中,而不是太大或太小。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第2期|67-77|共11页
  • 作者单位

    Shanghai Maritime Univ Coll Informat Engn Shanghai 201306 Peoples R China|Tongji Univ Coll Elect & Informat Engn Shanghai 200092 Peoples R China;

    Tongji Univ Coll Elect & Informat Engn Shanghai 200092 Peoples R China;

    East China Univ Sci & Technol Sch Informat Sci & Engn Shanghai 200237 Peoples R China;

    Shanghai Maritime Univ Coll Informat Engn Shanghai 201306 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-label; Label correlation; Multi-view;

    机译:多标签;标签相关性;多视角;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号