首页> 外文期刊>Neurocomputing >Where to go: An effective point-of-interest recommendation framework for heterogeneous social networks
【24h】

Where to go: An effective point-of-interest recommendation framework for heterogeneous social networks

机译:何去何从:针对异构社交网络的有效兴趣点推荐框架

获取原文
获取原文并翻译 | 示例

摘要

Point-of-Interest (POI) recommendation is one of the most essential tasks in LBSNs to help users discover new interesting locations, especially when users travel out of town or to unfamiliar areas. Current studies on POI recommendation in LBSNs mainly focus on modeling multiple factors extracted from users' profiles and checking-in records. Data sparsity and incompleteness of user-POI interaction matrix are very common problems in POI recommendation, especially for the out-of-town scenario. Another challenge is that most information in the LBSNs is unreliable due to users' different backgrounds or preferences. Because of the close relationship between users, information from trustable friends on CommunicationBased Social Networks (CBSNs) is more valuable than that in LBSNs, which can give a preferable suggestion instead of trustless reviews in LBSNs. In this study, we propose a latent probabilistic generative model called HI-LDA (Heterogeneous Information based LDA), which can accurately capture users' words on CBSNs by taking into full consideration the information on LBSNs including geographical effect as well as the abundant information including social relationship, users' interactive behaviors and comment content. In particular, the parameters of the HI-LDA model can be inferred by the Gibbs sampling method in an effective fashion. Beyond these proposed techniques, we introduce an POI recommendation framework integrating geographical clustering approach considering the locations and popularity of POIs simultaneously. Extensive experiments were conducted to evaluate the performance of the proposed framework on two real heterogeneous LBSN-CBSN networks. The experimental results demonstrate the superiority of HI-LDA on effective and efficient POI recommendation in both home-town and out-of-town scenarios, when compared with the state-of-the-art baseline approaches. (C) 2019 Elsevier B.V. All rights reserved.
机译:兴趣点(POI)推荐是LBSN中最重要的任务之一,可以帮助用户发现新的有趣位置,尤其是当用户出城旅行或去陌生地区时。当前在LBSN中对POI推荐的研究主要集中在对从用户个人资料和签到记录中提取的多个因素进行建模。用户-POI交互矩阵的数据稀疏性和不完整性是POI建议中非常常见的问题,尤其是对于外地场景。另一个挑战是,由于用户的背景或偏好不同,LBSN中的大多数信息都不可靠。由于用户之间的密切关系,基于可通信的社交网络(CBSN)上可信任朋友的信息比LBSN中的信息更有价值,这可以提供更好的建议,而不是LBSN中的不信任评论。在这项研究中,我们提出了一种潜在的概率生成模型,称为HI-LDA(基于异构信息的LDA),该模型可以通过充分考虑有关LBSN的信息(包括地理效应)以及包括社交关系,用户的互动行为和评论内容。特别地,可以通过吉布斯采样方法以有效方式推断HI-LDA模型的参数。除了这些提出的技术外,我们还引入了一个集成了地理聚类方法的POI推荐框架,同时考虑了POI的位置和受欢迎程度。进行了广泛的实验,以评估所提出的框架在两个真正的异构LBSN-CBSN网络上的性能。实验结果表明,与最新的基准方法相比,HI-LDA在家乡和城外场景中均具有有效且高效的POI推荐优势。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第15期|56-69|共14页
  • 作者单位

    Chengdu Univ Informat Technol Sch Cybersecur Chengdu 610225 Sichuan Peoples R China;

    Chengdu Univ Informat Technol Sch Software Engn Chengdu 610225 Sichuan Peoples R China;

    Chengdu Univ Informat Technol Sch Management Chengdu 610103 Sichuan Peoples R China;

    Beijing Jiaotong Univ Sch Elect & Informat Engn Beijing 100044 Peoples R China;

    Nanjing Univ Finance & Econ Coll Informat Engn Nanjing 210023 Jiangsu Peoples R China;

    Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China;

    Yunnan Univ Sch Informat Sci & Engn Kunming 650500 Yunnan Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Location-based social networks; POI recommendation; Heterogeneous networks; Probabilistic graphical model;

    机译:基于位置的社交网络;POI推荐;异构网络;概率图形模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号