首页> 外文期刊>Neurocomputing >A data imputation method for multivariate time series based on generative adversarial network
【24h】

A data imputation method for multivariate time series based on generative adversarial network

机译:基于生成对抗网络的多元时间序列数据插补方法

获取原文
获取原文并翻译 | 示例

摘要

Multivariate time series (MTS) processing plays an important role in many fields such as industry, finance, medical, etc. However, the presence of missing data in MTS makes data analysis process more complicated. To address this issue, MTS imputation reconstructs missing data with a high accuracy by exploiting a precise model of MTS distribution. Despite being an effective tool for modeling distribution on images, generative adversarial networks (GANs) have limitations in modeling MTS distribution. In this paper, to improve MTS imputation performance, a multivariate time series generative adversarial network (MTS-GAN) is proposed for MTS distribution modeling by introducing the multi-channel convolution into GANs. It is then applied to MTS imputation by formulating a constrained MTS generation task. Experimental results show that MTS-GAN performs well in modeling MTS distribution. Compared with several approaches, the proposed MTS-GAN based imputation method not only achieves a higher imputation accuracy under different missing rates, but also performs more robustly as the missing rate increases. (C) 2019 Elsevier B.V. All rights reserved.
机译:多元时间序列(MTS)处理在诸如工业,金融,医疗等许多领域中起着重要作用。但是,MTS中缺少数据的存在使数据分析过程变得更加复杂。为了解决这个问题,MTS归因通过利用MTS分布的精确模型来高精度地重建丢失的数据。尽管生成对抗网络是一种有效的建模图像分布的工具,但在建模MTS分布方面存在局限性。为了提高MTS的插补性能,通过将多通道卷积引入GAN中,提出了用于MTS分布建模的多元时间序列生成对抗网络(MTS-GAN)。然后通过制定受约束的MTS生成任务,将其应用于MTS插补。实验结果表明,MTS-GAN在建模MTS分布方面表现良好。与几种方法相比,所提出的基于MTS-GAN的插值方法不仅在不同的丢失率下具有更高的插值精度,而且随着丢失率的增加,其性能也更加强大。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第30期|185-197|共13页
  • 作者

    Guo Zijian; Wan Yiming; Ye Hao;

  • 作者单位

    Tsinghua Univ Dept Automat Beijing 100084 Peoples R China|Beijing Natl Res Ctr Informat Sci & Technol BNRis Beijing 100084 Peoples R China;

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Wuhan 430074 Hubei Peoples R China|Huazhong Univ Sci & Technol Minist Educ Key Lab Image Proc & Intelligent Control Wuhan Hubei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multivariate time series; Missing data; Imputation; Distribution; Generative adversarial networks;

    机译:多元时间序列;缺失数据;归因;分配;生成对抗网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号