首页> 外文期刊>Neurocomputing >Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network
【24h】

Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network

机译:基于深度空间卷积和多标签残差网络的动作单元识别

获取原文
获取原文并翻译 | 示例

摘要

Facial Action Unit (AU) recognition is an essential step in the facial analysis. A facial image has one or more AU(s). Given an AU, the number of images without the AU is far greater than that of images with the AU. So, AU recognition is not only a sample imbalance problem but also a multi-label learning problem. For the two problems, we proposed a novel Multi-label Slope Rate (MSR) loss function and an Advanced-MSR (Ad-MSR) loss function in deep network architecture to recognize AU. For other characters of AU recognition, a local convolution and residual units are used in the architecture. The experimental results on two expression databases labeled AU show that the proposed loss functions not only address overfitting of the network on the training set and enhancing the generalization ability on the test set. The proposed architecture also gets well performance in the databases. (C) 2019 Elsevier B.V. All rights reserved.
机译:面部动作单元(AU)识别是面部分析中必不可少的步骤。面部图像具有一个或多个AU。给定一个AU,没有AU的图像数量远大于带有AU的图像数量。因此,AU识别不仅是样本失衡问题,而且还是多标签学习问题。针对这两个问题,我们在深度网络架构中提出了新颖的多标签斜率(MSR)损失函数和高级MSR(Ad-MSR)损失函数以识别AU。对于AU识别的其他特征,在体系结构中使用局部卷积和残差单元。在两个标记为AU的表达数据库上的实验结果表明,所提出的损失函数不仅解决了训练集上网络的过度拟合问题,而且增强了测试集上的泛化能力。所提出的架构在数据库中也具有良好的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第24期|130-138|共9页
  • 作者单位

    Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing 100101, Peoples R China;

    Xi An Jiao Tong Univ, Coll Software, Xian 710000, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Coll Software, Xian 710000, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Coll Software, Xian 710000, Shaanxi, Peoples R China;

    Capital Med Univ, Adv Innovat Ctr Human Brain Protect, Beijing 100054, Peoples R China|China Acad Elect & Informat Technol, Beijing 100041, Peoples R China;

    China Acad Elect & Informat Technol, Beijing 100041, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sample imbalance problem; AU recognition; Multi-label learning; Local convolution; Residual unit;

    机译:样本不平衡问题;AU识别;多标签学习;本地卷积;剩余单位;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号