首页> 外文期刊>Neurocomputing >Identifying influential spreaders in large-scale networks based on evidence theory
【24h】

Identifying influential spreaders in large-scale networks based on evidence theory

机译:基于证据理论的大规模网络中有影响力的传播者识别

获取原文
获取原文并翻译 | 示例

摘要

Identifying the most influential spreaders is an important issue in epidemic spreading, viral marketing, and controlling the spreading process of information. Thus, methods for identifying influential spreaders in complex networks have received increasing attention from researchers. During recent decades, researchers have proposed many methods. However, each of these methods has advantages and disadvantages. In this paper, we propose a new efficient algorithm for identifying influential spreaders based on the Dempster-Shafer (D-S) evidence theory, which is a complete theory that deal with uncertainty or imprecision. We call our proposed algorithm D-2SN, which trades off between the degree (D) and the 2-step neighbor information (2SN) of every node in a network. Specifically, the influence of both the degree and the 2SN of each node are represented by a basic probability assignment (BPA). D-2SN is determined by the fusion of these BPAs. Since the algorithm considers not only the topological structure of each node, but also its neighbors' structure, it is a good choice to balance cost and performance. In addition, it also exhibits very low time complexity O( k n), which makes it applicable to large-scale networks. To evaluate the performance of D-2SN, we employ the Independent Cascade (IC) and Liner Threshold (LT) models to examine the spreading efficiency of each node and compare D-2SN with several classic methods in eight real-world networks. Extensive experiments demonstrate the superiority of D-2SN to other baseline methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:在流行病传播,病毒式营销和控制信息传播过程中,确定最具影响力的传播者是一个重要问题。因此,用于识别复杂网络中有影响力的传播器的方法已受到研究人员的越来越多的关注。在最近的几十年中,研究人员提出了许多方法。但是,这些方法中的每一种都有优点和缺点。在本文中,我们提出了一种基于Dempster-Shafer(D-S)证据理论的有效的有影响力的吊具识别新算法,该理论是处理不确定性或不精确性的完整理论。我们称我们提出的算法D-2SN,该算法在网络的每个节点的度(D)与两步邻居信息(2SN)之间进行权衡。具体而言,每个节点的程度和2SN的影响都由基本概率分配(BPA)表示。 D-2SN由这些BPA的融合确定。由于该算法不仅考虑了每个节点的拓扑结构,而且还考虑了其​​邻居的结构,因此,这是平衡成本和性能的理想选择。另外,它还表现出非常低的时间复杂度O( n),使其适用于大规模网络。为了评估D-2SN的性能,我们采用了独立级联(IC)和线性阈值(LT)模型来检查每个节点的扩展效率,并将D-2SN与八个现实网络中的几种经典方法进行比较。大量实验证明了D-2SN优于其他基准方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第24期|466-475|共10页
  • 作者单位

    Henan Normal Univ, Sch Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China|Engn Technol Res Ctr Comp Intelligence & Data Min, Xinxiang 453007, Henan, Peoples R China;

    Henan Normal Univ, Sch Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China|Engn Technol Res Ctr Comp Intelligence & Data Min, Xinxiang 453007, Henan, Peoples R China;

    Henan Normal Univ, Sch Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China|Engn Technol Res Ctr Comp Intelligence & Data Min, Xinxiang 453007, Henan, Peoples R China;

    Henan Normal Univ, Sch Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China|Engn Technol Res Ctr Comp Intelligence & Data Min, Xinxiang 453007, Henan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Large-scale networks; Influential spreaders; Dempster-Shafer evidence theory; Neighbor information; D-2SN centrality;

    机译:大规模网络;有影响的吊具;Dempster-Shafer证据理论;邻居信息;D-2SN中心;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号