首页> 外文期刊>Neurocomputing >Neural networks based on three classes of NCP-functions for solving nonlinear complementarity problems
【24h】

Neural networks based on three classes of NCP-functions for solving nonlinear complementarity problems

机译:基于三类NCP函数的神经网络,用于解决非线性互补问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider a family of neural networks for solving nonlinear complementarity problems (NCP). The neural networks are constructed from the merit functions based on three classes of NCP-functions: the generalized natural residual function and its two symmetrizations. In this paper, we first characterize the stationary points of the induced merit functions. Growth behavior of the complementarity functions is also described, as this will play an important role in describing the level sets of the merit functions. In addition, the stability of the steepest descent-based neural network model for NCP is analyzed. We provide numerical simulations to illustrate the theoretical results, and also compare the proposed neural networks with existing neural networks based on other well-known NCP-functions. Numerical results indicate that the performance of the neural network is better when the parameter p associated with the NCP-function is smaller. The efficiency of the neural networks in solving NCPs is also reported. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们考虑了一个用于解决非线性互补问题(NCP)的神经网络。基于三类NCP函数,由价值函数构造神经网络:广义自然残差函数及其两个对称性。在本文中,我们首先描述了诱导的优点函数的平稳点。还描述了互补函数的增长行为,因为这将在描述绩效函数的水平集时发挥重要作用。此外,分析了基于最速下降的神经网络神经网络模型的稳定性。我们提供数值模拟来说明理论结果,并且还将拟议的神经网络与基于其他众所周知的NCP函数的现有神经网络进行比较。数值结果表明,与NCP函数相关的参数p越小,神经网络的性能越好。还报道了神经网络解决NCP的效率。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号