首页> 外文期刊>Neurocomputing >A spatial-aware joint optic disc and cup segmentation method
【24h】

A spatial-aware joint optic disc and cup segmentation method

机译:空间感知的联合视盘和杯分割方法

获取原文
获取原文并翻译 | 示例

摘要

When dealing with the optic disc and cup in the optical nerve head images, their joint segmentation confronts two critical problems. One is that the spatial layout of the vessels in the optic nerve head images is variant. The other is that the landmarks for the optic cup boundaries are spatially sparse and at small spatial scale. To solve these two problems, we propose a spatial-aware joint segmentation method by explicitly considering the spatial locations of the pixels and learning the multi-scale spatially dense features. We formulate the joint segmentation task from a probabilistic perspective, and derive a spatial-aware maximum conditional probability framework and the corresponding error function. Accordingly, we provide an end-to-end solution by designing a spatial-aware neural network. It consists of three modules: the atrous CNN module to extract the spatially dense features, the pyramid filtering module to produce the spatial-aware multi-scale features, and the spatial-aware segmentation module to predict the labels of pixels. We validate the state-of-the-art performances of our spatial-aware segmentation method on two public datasets, i.e., ORIGA and DRISHTI. Based on the segmentation masks, we quantify the cup-to-disk values and apply them to the glaucoma screening. High correlation between the cup-to-disk values and the risks of the glaucoma is validated on the dataset ORIGA. (C) 2019 Elsevier B.V. All rights reserved.
机译:当处理视神经乳头图像中的视盘和杯时,它们的关节分割面临两个关键问题。一种是视神经乳头图像中血管的空间布局是变化的。另一个是视杯边界的地标在空间上稀疏且空间比例较小。为了解决这两个问题,我们通过明确考虑像素的空间位置并学习多尺度空间密集特征,提出了一种空间感知联合分割方法。我们从概率的角度制定联合分割任务,并得出空间感知的最大条件概率框架和相应的误差函数。因此,我们通过设计空间感知神经网络来提供端到端解决方案。它由三个模块组成:用于提取空间密集特征的多孔CNN模块,用于生成空间感知多尺度特征的金字塔过滤模块以及用于预测像素标签的空间感知分割模块。我们在两个公共数据集ORIGA和DRISHTI上验证了我们的空间感知分割方法的最新技术性能。基于分割蒙版,我们量化了杯到盘的值,并将其应用于青光眼筛查。数据集ORIGA验证了杯盘数值与青光眼风险之间的高度相关性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第24期|285-297|共13页
  • 作者单位

    Cent S Univ, Sch Comp Sci & Engn, Changsha, Hunan, Peoples R China;

    Xi An Jiao Tong Univ, Xian, Shaanxi, Peoples R China|Univ Oulu, Ctr Machine Vis & Signal Anal, Oulu, Finland;

    Western Univ, Dept Med Imaging, London, ON, Canada;

    Cent S Univ, Sch Comp Sci & Engn, Changsha, Hunan, Peoples R China;

    Univ Oulu, Ctr Machine Vis & Signal Anal, Oulu, Finland;

    Cent S Univ, Sch Comp Sci & Engn, Changsha, Hunan, Peoples R China|Hunan Prov Engn Technol Res Ctr Comp Vis & Intell, Changsha, Hunan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Joint OD and OC segmentation; Conditional probability; Spatial-aware error function; Glaucoma screening;

    机译:联合OD和OC分割;条件概率;空间感知错误功能;青光眼筛选;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号