首页> 外文期刊>Neurocomputing >Bidirectional LSTM with attention mechanism and convolutional layer for text classification
【24h】

Bidirectional LSTM with attention mechanism and convolutional layer for text classification

机译:具有注意力机制和卷积层的双向LSTM用于文本分类

获取原文
获取原文并翻译 | 示例

摘要

Neural network models have been widely used in the field of natural language processing (NLP). Recurrent neural networks (RNNs), which have the ability to process sequences of arbitrary length, are common methods for sequence modeling tasks. Long short-term memory (LSTM) is one kind of RNNs and has achieved remarkable performance in text classification. However, due to the high dimensionality and sparsity of text data, and to the complex semantics of the natural language, text classification presents difficult challenges. In order to solve the above problems, a novel and unified architecture which contains a bidirectional LSTM (BiLSTM), attention mechanism and the convolutional layer is proposed in this paper. The proposed architecture is called attention-based bidirectional long short-term memory with convolution layer (AC-BiLSTM). In AC-BiLSTM, the convolutional layer extracts the higher-level phrase representations from the word embedding vectors and BiLSTM is used to access both the preceding and succeeding context representations. Attention mechanism is employed to give different focus to the information out-putted from the hidden layers of BiLSTM. Finally, the softmax classifier is used to classify the processed context information. AC-BiLSTM is able to capture both the local feature of phrases as well as global sentence semantics. Experimental verifications are conducted on six sentiment classification datasets and a question classification dataset, including detailed analysis for AC-BiLSTM. The results clearly show that AC-BiLSTM outperforms other state-of-the-art text classification methods in terms of the classification accuracy. (C) 2019 Elsevier B.V. All rights reserved.
机译:神经网络模型已在自然语言处理(NLP)领域中广泛使用。递归神经网络(RNN)具有处理任意长度序列的能力,是序列建模任务的常用方法。长短期记忆(LSTM)是一种RNN,在文本分类中取得了显着的性能。但是,由于文本数据的高度维度和稀疏性以及自然语言的复杂语义,文本分类提出了艰巨的挑战。为了解决上述问题,提出了一种新颖的,统一的体系结构,该体系结构包含双向LSTM(BiLSTM),注意力机制和卷积层。所提出的架构称为带卷积层的基于注意力的双向长期短期存储(AC-BiLSTM)。在AC-BiLSTM中,卷积层从单词嵌入向量中提取更高级别的短语表示,而BiLSTM用于访问前面和后面的上下文表示。注意机制用于从BiLSTM的隐藏层输出的信息给予不同的关注。最后,softmax分类器用于对处理后的上下文信息进行分类。 AC-BiLSTM能够捕获短语的局部特征以及全局句子语义。对六个情感分类数据集和一个问题分类数据集进行了实验验证,包括对AC-BiLSTM的详细分析。结果清楚地表明,在分类准确性方面,AC-BiLSTM优于其他最新的文本分类方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号