首页> 外文期刊>Neurocomputing >Supervised dictionary-based transfer subspace learning and applications for fault diagnosis of sucker rod pumping systems
【24h】

Supervised dictionary-based transfer subspace learning and applications for fault diagnosis of sucker rod pumping systems

机译:基于监督词典的转移子空间学习及其在抽油杆抽油系统故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Sucker rod pumping wells are systems that their operation states varies slowly. For a relatively new well, it is hard to collect all kinds of fault samples for training. Moreover, samples from different wells are not always have similar distributions, so directly using samples from other wells as the training data may hardly get good results. In this paper, a novel framework is proposed to solve the aforementioned problems. For the source data from one well and the target data from another well, a transform matrix is calculated to transfer these data into a common low dimensional subspace. In this subspace, the source data that contain all kinds of fault samples and the target data that lack some kinds of fault samples can be represented by a shared dictionary matrix. By introducing two idea regularization terms, the structure information of source data and target data are included into the dictionary learning process. So the obtained dictionary has discriminative ability. Extensive experiments are conducted to evaluate the effectiveness of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
机译:抽油杆抽油井是其工作状态缓慢变化的系统。对于相对较新的油井,很难收集各种故障样本进行培训。此外,来自不同井的样本并不总是具有相似的分布,因此直接使用来自其他井的样本,因为训练数据可能很难获得良好的结果。本文提出了一种新颖的框架来解决上述问题。对于来自一口井的源数据和来自另一口井的目标数据,计算变换矩阵以将这些数据传输到公共的低维子空间中。在这个子空间中,包含各种故障样本的源数据和缺少某些故障样本的目标数据可以由共享字典矩阵表示。通过引入两个思想正则化术语,源数据和目标数据的结构信息被包含在字典学习过程中。因此,获得的词典具有判别能力。进行了广泛的实验,以评估该方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号