首页> 外文期刊>Neurocomputing >Parameter estimations of uncooperative space targets using novel mixed artificial neural network
【24h】

Parameter estimations of uncooperative space targets using novel mixed artificial neural network

机译:基于新型混合人工神经网络的非合作空间目标参数估计

获取原文
获取原文并翻译 | 示例

摘要

Estimating the parameters of an uncooperative space target is vital important in the on-orbit servicing missions (OOS). Considering the measurement failures caused by the complexed space environment during the measuring procedure, this paper proposes a novel dual vector quaternions based mixed artificial neural network estimating algorithm (DVQ-MANN) to estimate the parameters of the uncooperative space target. Firstly, the dual vector quaternions (DVQ) are utilized to set up the relative kinematics and dynamics model. When the measurements are available, an Extended Kalman Filter (EKF) of the DVQ-MANN will operate to accomplish parameter estimations. When the measurements failures occur, the artificial neural networks(ANN) of the DVQ-MANN will work. In the designed DVQ-MANN, the first ANN is a three-layer feedforward neural network to estimate the states of the uncooperative space target. Besides, a novel deep convolution neural network is designed to estimate the covariance matrix of the states for its advantages in processing high dimensional inputs. By training well off-board and updating onboard, the proposed ANNs of the proposed DVQ-MANN can make reliable estimations under measurements failures. Finally, the proposed DVQ-MANN is validated by mathematical simulations to show its robust performances. (C) 2019 Published by Elsevier B.V.
机译:估计不合作空间目标的参数对于在轨维修任务(OOS)至关重要。考虑到复杂的空间环境在测量过程中造成的测量失败,提出了一种基于双矢量四元数的新型混合人工神经网络估计算法(DVQ-MANN)来估计不合作空间目标的参数。首先,利用双矢量四元数(DVQ)建立相对运动学和动力学模型。当测量可用时,DVQ-MANN的扩展卡尔曼滤波器(EKF)将运行以完成参数估计。当测量失败发生时,DVQ-MANN的人工神经网络(ANN)将起作用。在设计的DVQ-MANN中,第一个ANN是一个三层前馈神经网络,用于估计不合作空间目标的状态。此外,设计了一种新颖的深度卷积神经网络来估计状态的协方差矩阵,以利用其在处理高维输入中的优势。通过在船外进行良好的训练并在船上进行更新,提出的DVQ-MANN的提议的ANN可以在测量失败的情况下做出可靠的估计。最后,通过数学仿真对提出的DVQ-MANN进行了验证,以显示其强大的性能。 (C)2019由Elsevier B.V.发布

著录项

  • 来源
    《Neurocomputing》 |2019年第28期|232-244|共13页
  • 作者单位

    Northwestern Polytech Univ, Natl Key Lab Aerosp Flight Dynam, Xian 710072, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Natl Key Lab Aerosp Flight Dynam, Xian 710072, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Natl Key Lab Aerosp Flight Dynam, Xian 710072, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Natl Key Lab Aerosp Flight Dynam, Xian 710072, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Parameter estimations; Dual vector quaternions; BP neural networks; EKF; Deep convolution neural network;

    机译:参数估计;双矢量四元数;BP神经网络;EKF;深度卷积神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号