首页> 外文期刊>Neurocomputing >AppScalpel: Combining static analysis and outlier detection to identify and prune undesirable usage of sensitive data in Android applications
【24h】

AppScalpel: Combining static analysis and outlier detection to identify and prune undesirable usage of sensitive data in Android applications

机译:AppScalpel:结合静态分析和异常检测来识别和修剪Android应用程序中对敏感数据的不良使用

获取原文
获取原文并翻译 | 示例

摘要

Today's Android users face a security dilemma: they want to grant permissions to apps for enjoying more abundant functionalities, but also worry that the apps may abuse these permissions to leak their private information without their grants. To optimize users' benefits, we implement a novel privacy-preserving system named AppScalpel to prune undesirable usage of sensitive data in Android applications, on the top of static analysis and outlier detection results. We use static analysis to extract sufficient contextual features of data usage behaviors within applications. To precisely identify undesirable usage of sensitive data, we leverage outlier detection, which solves the problem of lacking labeled behavioral samples. To enforce the privacy-preserving rules within apps, AppScalpel instruments rule enforcers on each undesirable data-flow path respectively by the code instrumentation technique. We aim to block undesirable usage of sensitive data without affecting other user-desired functionalities. Our evaluation demonstrates that AppScalpel precisely identifies undesirable usage of sensitive data and effectively protects users' private information in a fine-grained mode, and the robustness of the instrumented apps is also achieved. Moreover, for the instrumented apps, AppScalpel introduces little space and runtime overhead. (C) 2019 Elsevier B.V. All rights reserved.
机译:当今的Android用户面临一个安全难题:他们想授予应用程序权限以享受更多功能,但又担心这些应用程序可能会滥用这些权限,以在未经其授权的情况下泄漏其私人信息。为了优化用户的利益,我们实施了一个名为AppScalpel的新颖的隐私保护系统,以在静态分析和异常检测结果之上对Android应用程序中敏感数据的不良使用进行修剪。我们使用静态分析来提取应用程序内数据使用行为的足够的上下文特征。为了精确识别敏感数据的不良用法,我们利用异常值检测来解决缺少标记的行为样本的问题。为了在应用程序内实施隐私保护规则,AppScalpel仪器通过代码检测技术分别在每个不希望的数据流路径上对强制执行器进行规制。我们的目标是在不影响其他用户所需功能的情况下,阻止对敏感数据的不良使用。我们的评估表明,AppScalpel可以准确地识别出不希望使用的敏感数据,并以细粒度模式有效地保护了用户的私人信息,并且还实现了已检测应用的鲁棒性。此外,对于已检测的应用程序,AppScalpel引入了很少的空间和运行时开销。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第14期|10-25|共16页
  • 作者单位

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Anhui, Peoples R China;

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Anhui, Peoples R China;

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Anhui, Peoples R China;

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Anhui, Peoples R China;

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Anhui, Peoples R China;

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Anhui, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Android privacy; Static analysis; Outlier detection; Code instrumentation; Rule enforcement;

    机译:Android隐私;静态分析;离群值检测;代码检测;规则执行;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号