首页> 外文期刊>Neurocomputing >A novel online detection method of data injection attack against dynamic state estimation in smart grid
【24h】

A novel online detection method of data injection attack against dynamic state estimation in smart grid

机译:智能电网动态状态估计的数据注入攻击在线检测新方法

获取原文
获取原文并翻译 | 示例

摘要

Dynamic state estimation is usually employed to provide real-time and effective supervision for the smart grid (SG) operation. However, dynamic state estimators have been recently found vulnerable to data injection attack, which are misled without posing any anomalies to bad data detection (BDD). To improve the robustness of the SG, it is firstly necessary to find the system vulnerability by developing an imperfect data injection attack strategy with minimum attack residual increment. In this attack strategy, these targeted state variables are chosen by a designed search approach, and their values are then determined by solving an optimal problem based on particle swarm optimization (PSO) algorithm. Considering the characters of traditional chi-square detection method and history statistical information of state variables without being attacked, a new online chi-square detection method associated with two kinds of state estimates is proposed to make up for the system vulnerability. Numerical simulations confirm the feasibility and effectiveness of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
机译:动态状态估计通常用于为智能电网(SG)运行提供实时有效的监督。但是,最近发现动态状态估计器容易受到数据注入攻击的影响,这些数据被误导而不会对不良数据检测(BDD)造成任何异常。为了提高SG的鲁棒性,首先有必要通过开发具有最小攻击残留增量的不完善数据注入攻击策略来发现系统漏洞。在这种攻击策略中,通过设计搜索方法选择这些目标状态变量,然后通过基于粒子群优化(PSO)算法解决最优问题来确定它们的值。鉴于传统卡方检测方法的特点和状态变量的历史统计信息不受攻击,提出了一种与两种状态估计相关的在线卡方检测方法,以弥补系统的脆弱性。数值模拟证实了该方法的可行性和有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第7期|73-81|共9页
  • 作者单位

    Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai 200072, Peoples R China;

    Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai 200072, Peoples R China;

    Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai 200072, Peoples R China;

    Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai 200072, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Smart grid; Data injection attack; Kalman filter estimation; Bad data detection (BDD); Online attack detection;

    机译:智能电网;数据注入攻击;卡尔曼滤波估计;不良数据检测(BDD);在线攻击检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号