首页> 外文期刊>Neurocomputing >Using continuous Hopfield neural network for solving a new optimization architecture model of probabilistic self organizing map
【24h】

Using continuous Hopfield neural network for solving a new optimization architecture model of probabilistic self organizing map

机译:利用连续Hopfield神经网络求解概率自组织图的新优化架构模型

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic models have proven their strength to model many natural phenomena as close as possible to reality, in particular, the probabilistic self organizing map ( PRSOM) that belongs to the unsupervised learning models. It allows to provide an estimation of the probability density function through the likelihood maximization. This latter function depends on several parameters given by the model architecture. In this context, the aim of this paper is to deal with the architecture choice problem that consists in determining the optimal number of components needed for a better performance. In this paper, we propose a new optimization model that describes the problem above. We present the architecture of PRSOM in a mathematical system of a non linear objective function with mixed variables under linear and quadratic constraints. Due to the complexity of the resolution, we suggest the continuous Hopfield neural network (CHN) that we support by a deep stability analysis. Performance of the proposed model is demonstrated through the dataset clustering. (C) 2019 Elsevier B.V. All rights reserved.
机译:概率模型已经证明了其能力,可以对尽可能接近现实的许多自然现象进行建模,尤其是属于无监督学习模型的概率自组织图(PRSOM)。它允许通过似然最大化来提供概率密度函数的估计。后一个功能取决于模型体系结构给出的几个参数。在这种情况下,本文的目的是解决架构选择问题,该问题包括确定实现更好性能所需的最佳组件数量。在本文中,我们提出了一个新的优化模型来描述上述问题。我们在线性和二次约束下具有混合变量的非线性目标函数的数学系统中介绍PRSOM的体系结构。由于解析的复杂性,我们建议通过深度稳定性分析来支持连续的Hopfield神经网络(CHN)。通过数据集聚类证明了所提出模型的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号