首页> 外文期刊>Neurocomputing >A new online Bayesian NMF based quasi-clean speech reconstruction for non-intrusive voice quality evaluation
【24h】

A new online Bayesian NMF based quasi-clean speech reconstruction for non-intrusive voice quality evaluation

机译:一种新的基于贝叶斯NMF的在线在线纯净语音重构,用于非介入语音质量评估

获取原文
获取原文并翻译 | 示例

摘要

Voice quality evaluation under complex environments is an important part of Quality of Service. Recently, the non-intrusive evaluation is a challenging problem and is getting more and more attentive. Since the traditional non-intrusive evaluation has no knowledge of the original clean speech, it is expected to be underperformed the intrusive one. In this paper, a new non-intrusive method based on quasi-clean speech reconstruction and intrusive model is proposed. To obtain the quasi-clean speech, a new online Bayesian non-negative matrix factorization (NMF) based speech reconstruction algorithm is presented. The noise basis matrix is updated utilizing the noise frames from the online noisy observation, and the quasi-clean speech is reconstructed using the Bayesian NMF in combination of speech activity probability. The final reconstructed signal is regarded as the reference of the modified Perceptual Evaluation of Speech Quality (PESQ) model to achieve the noisy speech quality. The experiment results show that the proposed method obtains a 0.895 correlation on NOIZEUS and ITU-T P-series Supplement 23 database, which is 10.1% outperforms non-intrusive standard ITU-T P.563. (C) 2019 Elsevier B.V. All rights reserved.
机译:复杂环境下的语音质量评估是服务质量的重要组成部分。近来,非侵入式评估是一个具有挑战性的问题,并且越来越引起人们的注意。由于传统的非侵入式评估不了解原始的干净语音,因此预期其性能将不如侵入式评估。提出了一种基于准清晰语音重构和介入模型的非介入方法。为了获得准清晰语音,提出了一种新的基于在线贝叶斯非负矩阵分解的语音重构算法。利用来自在线噪声观测的噪声帧更新噪声基础矩阵,并使用贝叶斯NMF结合语音活动概率重建准清晰语音。最终的重构信号被视为改进的语音质量感知评估(PESQ)模型的参考,以实现嘈杂的语音质量。实验结果表明,该方法在NOIZEUS和ITU-T P系列增补23数据库上获得0.895的相关性,比非侵入式标准ITU-T P.563的性能高10.1%。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号