首页> 外文期刊>Neurocomputing >Joint Domain Matching and Classification for cross-domain adaptation via ELM
【24h】

Joint Domain Matching and Classification for cross-domain adaptation via ELM

机译:通过ELM进行跨域自适应的联合域匹配和分类

获取原文
获取原文并翻译 | 示例

摘要

Recent years, domain adaptation has attracted much attention in the community of machine learning. In this paper, we mainly focus on the tasks of Joint Domain Matching and Classification (JDMC) under the framework of extreme learning machine (ELM). Specifically, our JDMC method is formulated by optimizing both the output-adapted transformation and the cross-domain classifier, which allows us to simultaneously (1) align the source domain and target domain in the feature space with correlation alignment, (2) minimize the discrepancy between the source and target domain, measured in terms of both marginal and conditional probability distribution in the mapped feature space, (3) select informative features which behave similarly in both domains for knowledge transfer by imposing l(2,1)-norm on the output weights of ELM. In this respect, the proposed JDMC integrates the feature matching, feature selection and classifier design in a unified framework. Besides, an efficient alternative optimization strategy is exploited to solve the joint learning model. To evaluate the effectiveness of the proposed method, extensive experiments on several commonly used domain adaptation datasets are presented, the results show that the proposed method significantly outperforms the non-transfer ELM networks and consistently outperforms several state-of-art domain adaptation methods. (C) 2019 Published by Elsevier B.V.
机译:近年来,领域自适应在机器学习领域引起了很多关注。在本文中,我们主要关注极限学习机(ELM)框架下的联合域匹配和分类(JDMC)任务。具体而言,我们的JDMC方法是通过优化输出自适应转换和跨域分类器来制定的,这使我们能够同时(1)通过相关性对齐在特征空间中对齐源域和目标域,(2)最小化源域和目标域之间的差异(根据映射的特征空间中的边际和条件概率分布来衡量),(3)通过在两个域中施加l(2,1)-范数来选择在两个域中行为相似的信息特征ELM的输出权重。在这方面,提出的JDMC将特征匹配,特征选择和分类器设计集成在一个统一的框架中。此外,利用一种有效的替代优化策略来解决联合学习模型。为了评估该方法的有效性,对几种常用的域自适应数据集进行了广泛的实验,结果表明,该方法明显优于非传输ELM网络,并且始终优于几种最新的域自适应方法。 (C)2019由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号