首页> 外文期刊>Neurocomputing >An easy-to-hard learning strategy for within-image co-saliency detection
【24h】

An easy-to-hard learning strategy for within-image co-saliency detection

机译:图像内共显性检测的一种简单易学的学习策略

获取原文
获取原文并翻译 | 示例

摘要

Within-image co-saliency detection is to detect/highlight the common saliency (similar-appearance salient objects) in a single image. Ideally, it can be solved by detecting each individual salient object first and then comparing them, which is possible for some images with simple representations. However, in practice, this way is not accurate and robust for some images with complex representations. In this paper, we propose an easy-to-hard learning strategy to solve this problem. By directly localizing and comparing salient objects in simple images, superpixel confidences as co-salient objects are inferred by an easy learning method, which provide promising but also noisy supervisions for complex images. Therefore, within-image co-saliency detection in complex images can be modeled as a hard learning problem with noisy labels. A multi-scale Multiple Instance Learning (MIL) model together with a new sampling method is proposed to solve this hard learning problem with noisy labels. Experimental results show that the proposed method achieves the best performance on a public benchmark dataset and two synthetic datasets. (C) 2019 Elsevier B.V. All rights reserved.
机译:图像内共显着性检测是检测/突出显示单个图像中的共同显着性(外观相似的显着对象)。理想情况下,可以通过首先检测每个单独的显着对象然后比较它们来解决,这对于某些具有简单表示形式的图像而言是可能的。但是,实际上,这种方式对于某些具有复杂表示的图像而言并不准确且不可靠。在本文中,我们提出了一种易于解决的学习策略来解决此问题。通过直接定位和比较简单图像中的显着对象,可通过一种易于学习的方法来推断作为共显着对象的超像素置信度,这为复杂图像提供了有希望但又嘈杂的监管。因此,可以将复杂图像中的图像内共凸性检测建模为带有噪声标签的硬学习问题。提出了一种多尺度多实例学习(MIL)模型和一种新的采样方法,以解决带有噪声标签的这种硬学习问题。实验结果表明,该方法在公共基准数据集和两个综合数据集上均达到最佳性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第17期|166-176|共11页
  • 作者单位

    Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China;

    Univ Texas Rio Grande Valley, Dept Comp Sci, Edinburg, TX 78539 USA;

    Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China;

    Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA;

    Carnegie Mellon Univ, Human Sensing Lab, Pittsburgh, PA 15213 USA;

    Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China;

    Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA|Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Within-image co-saliency; Easy-to-hard learning; Multiple instance learning;

    机译:图像内共性;易于学习;多实例学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号