机译:ARSAC:通过自适应排名的样本共识进行有效的模型估计
Northwestern Polytech Univ, Sch Comp Sci, Xian, Shaanxi, Peoples R China;
Northwestern Polytech Univ, Sch Astronaut, Xian, Shaanxi, Peoples R China;
Northwestern Polytech Univ, Sch Comp Sci, Xian, Shaanxi, Peoples R China;
Northwestern Polytech Univ, Sch Comp Sci, Xian, Shaanxi, Peoples R China;
Northwestern Polytech Univ, Sch Comp Sci, Xian, Shaanxi, Peoples R China;
Northwestern Polytech Univ, Sch Comp Sci, Xian, Shaanxi, Peoples R China;
RANSAC; Robust model estimation; Efficiency; Adaptively ranked measurements; Non-uniform sampling; Geometric constraint;
机译:使用新型二元递归埃尔米特矩阵求逆的有效秩自适应最小二乘估计和多参数线性回归
机译:基于新型递归埃尔米特矩阵求逆的高效秩自适应最小二乘估计和多参数线性回归
机译:用排名设定采样有效地估计一分变型Lomax分布的比例参数
机译:高效随机优化的自适应样本共识
机译:高效的自适应重要性采样估算失效的时间依赖性概率与损伤耐损伤飞机结构的检查
机译:案例队列和嵌套案例控制抽样下的加速故障时间模型的有效估计
机译:一种基于模型的参数估计的高效自适应频率采样算法应用于攻击空间映射