首页> 外文期刊>Neurocomputing >ARSAC: Efficient model estimation via adaptively ranked sample consensus
【24h】

ARSAC: Efficient model estimation via adaptively ranked sample consensus

机译:ARSAC:通过自适应排名的样本共识进行有效的模型估计

获取原文
获取原文并翻译 | 示例

摘要

RANSAC is a popular robust model estimation algorithm in various computer vision applications. However, the speed of RANSAC declines dramatically as the inlier rate of the measurements decreases. In this paper, a novel Adaptively Ranked Sample Consensus(ARSAC) algorithm is presented to boost the speed and robustness of RANSAC. The algorithm adopts non-uniform sampling based on the ranked measurements to speed up the sampling process. Instead of a fixed measurement ranking, we design an adaptive scheme which updates the ranking of the measurements, to incorporate high quality measurements into sample at high priority. At the same time, a geometric constraint is proposed during sampling process to select measurements with scattered distribution in images, which could alleviate degenerate cases in epipolar geometry estimation. Experiments on both synthetic and real-world data demonstrate the superiority in efficiency and robustness of the proposed algorithm compared to the state-of-the-art methods. (c) 2018 Elsevier B.V. All rights reserved.
机译:RANSAC是在各种计算机视觉应用中流行的鲁棒模型估计算法。但是,随着测量的异常率降低,RANSAC的速度急剧下降。为了提高RANSAC的速度和鲁棒性,提出了一种新的自适应排序样本共识算法。该算法基于排名的测量结果采用非均匀采样,以加快采样过程。代替固定的测量等级,我们设计了一种自适应方案,该方案可以更新测量的等级,以将高品质的测量以高优先级合并到样本中。同时,在采样过程中提出了几何约束条件,以选择在图像中具有分散分布的测量值,这可以减轻对极几何估计中退化的情况。在合成数据和实际数据上进行的实验表明,与最新方法相比,该算法在效率和鲁棒性方面均具有优势。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号