首页> 外文期刊>Neurocomputing >An effective EM algorithm for mixtures of Gaussian processes via the MCMC sampling and approximation
【24h】

An effective EM algorithm for mixtures of Gaussian processes via the MCMC sampling and approximation

机译:通过MCMC采样和逼近有效的高斯混合过程的EM算法

获取原文
获取原文并翻译 | 示例

摘要

The Mixture of Gaussian Processes (MGP) is a powerful statistical model for characterizing multimodal data, but its conventional Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is computationally intractable because of its time complexity. To solve this problem, some approximation techniques have been proposed in the conventional EM algorithm. However, these approximate EM algorithms are ineffective or limited in some situations. To implement the EM algorithm more effectively, we approximate the EM algorithm with simulated samples of latent variable via the Monte Carlo Markov Chain (MCMC) sampling, and design an MCMC EM algorithm. Experiments on both synthetic and real-world data sets demonstrate that our MCMC EM algorithm is more effective than the state-of-the-art EM algorithms on classification and prediction problems. (C) 2018 Elsevier B.V. All rights reserved.
机译:高斯过程混合(MGP)是用于表征多峰数据的强大统计模型,但由于其时间复杂性,其传统的期望最大化(EM)算法(Dempster等人,1977)在计算上难以处理。为了解决这个问题,在常规的EM算法中已经提出了一些近似技术。但是,这些近似EM算法在某些情况下无效或受限制。为了更有效地实施EM算法,我们通过蒙特卡洛马尔可夫链(MCMC)采样对具有潜在变量模拟样本的EM算法进行了近似,并设计了MCMC EM算法。在综合和真实数据集上进行的实验表明,对于分类和预测问题,我们的MCMC EM算法比最新的EM算法更有效。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号