首页> 外文期刊>Neurocomputing >An image segmentation method of a modified SPCNN based on human visual system in medical images
【24h】

An image segmentation method of a modified SPCNN based on human visual system in medical images

机译:基于人眼视觉系统的医学图像改进SPCNN图像分割方法

获取原文
获取原文并翻译 | 示例

摘要

An image segmentation method of a modified simplified pulse-coupled neural network (MSPCNN) based on human visual system (HVS) is proposed for medical images. The method successfully determines the stimulus input of the MSPCNN according to the characteristics of PCNN and HVS. In order to accomplish the goal, we attempt to deduce the sub-intensity range of central neurons firing by introducing neighboring firing matrix Q and calculating intensity distribution range based on a new MSPCNN(NMSPCNN), and then reveal the way how sub-intensity range parameter Sint generates the stimulus input Sio(ij) closer to HVS. Besides, we try to substitute the above stimulus input into the MSPCNN to extract more suitable lesions for medical images. In contrast to prevalent PCNN models, the MSPCNN has higher segmentation accuracy rates and lower computational complexity because of the parameter setting method. Finally, a good proposed method comparing with the state-of-the-art methods has a better performance, presenting the overall metric OEM with MIAS of 0.8784, DDSM of 0.8606 and gallstones of 0.8585. (C) 2018 Elsevier B.V. All rights reserved.
机译:提出了一种基于人类视觉系统(HVS)的改进型简化脉冲耦合神经网络(MSPCNN)图像分割方法。该方法根据PCNN和HVS的特点,成功确定了MSPCNN的刺激输入。为了实现这一目标,我们尝试通过引入相邻的触发矩阵Q并基于新的MSPCNN(NMSPCNN)计算强度分布范围来推导中枢神经元触发的亚强度范围,然后揭示该亚强度范围的方式参数Sint生成更接近HVS的激励输入Sio(ij)。此外,我们尝试将上述刺激输入替代为MSPCNN,以提取更适合医学图像的病变。与流行的PCNN模型相比,由于参数设置方法,MSPCNN具有较高的分割准确率和较低的计算复杂度。最后,与现有技术方法相比,一种很好的建议方法具有更好的性能,其总体度量OEM的MIAS为0.8784,DDSM为0.8606,胆结石为0.8585。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号