首页> 外文期刊>Neurocomputing >Efficient genetic algorithms for optimal assignment of tasks to teams of agents
【24h】

Efficient genetic algorithms for optimal assignment of tasks to teams of agents

机译:高效的遗传算法,可将任务最佳分配给特工团队

获取原文
获取原文并翻译 | 示例

摘要

The problem of optimally assigning agents (resources) to a given set of tasks is known as the assignment problem (AP). The classical AP and many of its variations have been extensively discussed in the literature. In this paper, we examine a specific class of the problem, in which each task is assigned to a group of collaborating agents. APs in this class cannot be solved using the Hungarian or other known polynomial time algorithms. We employ the genetic algorithm (GA) to solve the problem. However, we show that if the size of the problem is large, then standard crossover operators cannot efficiently find nearoptimal solutions within a reasonable time. In general, the efficiency of the GA depends on the choice of genetic operators (selection, crossover, and mutation) and the associated parameters.
机译:将代理程序(资源)最佳地分配给一组给定任务的问题称为分配问题(AP)。文献中已广泛讨论了经典AP及其许多变体。在本文中,我们检查了问题的特定类别,其中每个任务都分配给一组协作代理。此类AP无法使用匈牙利语或其他已知的多项式时间算法求解。我们采用遗传算法(GA)解决此问题。但是,我们表明,如果问题的规模很大,那么标准的交叉算子就无法在合理的时间内有效地找到接近最优的解决方案。通常,遗传算法的效率取决于遗传算子的选择(选择,交叉和突变)和相关参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号