The problem of optimally assigning agents (resources) to a given set of tasks is known as the assignment problem (AP). The classical AP and many of its variations have been extensively discussed in the literature. In this paper, we examine a specific class of the problem, in which each task is assigned to a group of collaborating agents. APs in this class cannot be solved using the Hungarian or other known polynomial time algorithms. We employ the genetic algorithm (GA) to solve the problem. However, we show that if the size of the problem is large, then standard crossover operators cannot efficiently find nearoptimal solutions within a reasonable time. In general, the efficiency of the GA depends on the choice of genetic operators (selection, crossover, and mutation) and the associated parameters.
展开▼