首页> 外文期刊>Neurocomputing >Feature selection for multi-label learning based on kernelized fuzzy rough sets
【24h】

Feature selection for multi-label learning based on kernelized fuzzy rough sets

机译:基于核化模糊粗糙集的多标签学习特征选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is an essential pre-processing part in multi-label learning. Multi-label learning is usually used to deal with many complicated tasks, in which each sample is associated with multiple labels simultaneously. Fuzzy rough set model is one of the most effective ways for multi-label learning. However, it treats feature space and label space separately, and only uses features to describe sample structure information. In this paper, we fully consider the internal correlation between feature space and label space while fusing kernelized information from respective spaces. Moreover, we integrate fuzzy rough set with multiple kernel learning to finally realize feature selection. To be specific, firstly, we leverage one kind of kernel function to reveal the similarity between samples in feature space, and another one to assess the degree of label overlap between samples in label space. Secondly, we combine the kernelized information from the two spaces through linear combination to achieve precisely the lower approximation and construct a robust multi-label kernelized fuzzy rough set model, called RMFRS in this paper. Meanwhile, we discuss its properties and give theoretical analysis. Finally, we define a measurement criterion for selecting optimal features to evaluate the performance of the proposed algorithm. As many as 10 publicly available data sets are used to validate the effectiveness of our methods, and the result shows a distinct advantage over the state-of-the-art. (C) 2018 Elsevier B.V. All rights reserved.
机译:特征选择是多标签学习中必不可少的预处理部分。多标签学习通常用于处理许多复杂的任务,其中每个样本同时与多个标签关联。模糊粗糙集模型是多标签学习的最有效方法之一。但是,它分别处理特征空间和标签空间,并且仅使用特征来描述样本结构信息。在本文中,我们在融合来自各个空间的核化信息时,充分考虑了特征空间和标签空间之间的内部相关性。此外,我们将模糊粗糙集与多核学习相结合,以最终实现特征选择。具体来说,首先,我们利用一种核函数来揭示特征空间中样本之间的相似性,并利用另一种核函数来评估标签空间中样本之间的标签重叠程度。其次,我们通过线性组合将来自两个空间的核化信息进行组合,以精确地实现较低的逼近,并构建了一个健壮的多标签核化模糊粗糙集模型,称为RMFRS。同时,我们讨论了它的性质并给出了理论分析。最后,我们定义了一种用于选择最佳特征的评估标准,以评估所提出算法的性能。多达10个可公开获得的数据集用于验证我们方法的有效性,并且结果显示出与最新技术相比的明显优势。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号