首页> 外文期刊>Neurocomputing >Learning node and edge embeddings for signed networks
【24h】

Learning node and edge embeddings for signed networks

机译:学习签名网络的节点和边缘嵌入

获取原文
获取原文并翻译 | 示例

摘要

Machine learning tasks for edges and nodes in networks heavily rely on feature engineering which requires expert knowledge and careful effort. Recent years, people become interested in the low dimensional vector representation of nodes and edges. However, existing methods on signed networks only aim to learn the node vectors, resulting in omitting edge information and extra effort to design edge vectors. In this work, we develop a framework for learning both nodes and edge vectors for signed networks. Thus, we can directly use edge vectors to represent the properties of the edges, and thereby improving the performance of link-oriented tasks. Our framework for learning network features is as below. We assume that there is a global mapping between the node and edge vector spaces. This assumption allows us to transform the problem into learning the mapping function and the node vectors. We propose node proximity for signed networks, a definition that is generalized from the second-order node proximity for unsigned networks. It provides a unified objective function that can preserve both the node and edge pattern of the network. Based on this definition, we propose two signed network representation methods. The first method is neural network signed network embedding (nSNE). It learns the node vectors and the mapping function via neural networks approach, which can uses the power of deep learning to fit with the data. The second method is light signed network embedding (lSNE). It specifies the mapping function as simply and linear function. It has fewer parameters to estimate and is equal to factorize both similarity and sign matrixes. We compare our methods with three state-of-the-art methods on four datasets. The results show that our methods are competitive. (c) 2018 Elsevier B.V. All rights reserved.
机译:网络边缘和节点的机器学习任务在很大程度上依赖于要素工程,这需要专家知识和精心的工作。近年来,人们对节点和边缘的低维向量表示感兴趣。然而,有符号网络上的现有方法仅旨在学习节点向量,从而导致省略边缘信息并付出额外的努力来设计边缘向量。在这项工作中,我们开发了一个框架,用于学习有符号网络的节点和边缘向量。因此,我们可以直接使用边缘向量来表示边缘的属性,从而提高面向链接任务的性能。我们的学习网络功能的框架如下。我们假设节点和边缘向量空间之间存在全局映射。这个假设使我们能够将问题转化为学习映射函数和节点向量。我们提出了有符号网络的节点邻近度,这个定义是从无符号网络的二阶节点邻近度中得出的。它提供了一个统一的目标功能,可以同时保留网络的节点和边缘模式。基于此定义,我们提出了两种带符号的网络表示方法。第一种方法是神经网络签名网络嵌入(nSNE)。它通过神经网络方法学习节点向量和映射函数,可以利用深度学习的能力来拟合数据。第二种方法是轻签名网络嵌入(lSNE)。它将映射函数指定为简单函数和线性函数。它具有较少的要估计的参数,并且等于分解相似度和符号矩阵。我们将我们的方法与四个数据集上的三个最新方法进行了比较。结果表明,我们的方法具有竞争力。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号