首页> 外文期刊>Neurocomputing >Combining genetic algorithms and neural networks to build a signal pattern classifier
【24h】

Combining genetic algorithms and neural networks to build a signal pattern classifier

机译:结合遗传算法和神经网络来构建信号模式分类器

获取原文
获取原文并翻译 | 示例

摘要

In this paper we show how genetic algorithms and neural networks are combined to build a high-performance signal pattern classifier (GNSPC). Signal patterns are intrinsic to many sensor-based systems. The goal of GNSPC is to differentiate among large numbers of signal pattern classes with low classification cost and high classification performance. Classification performance is measured by the correct classification of noisy signal patterns despite using pure signal patterns for building the classifier. GNSPC is basically a decision tree classifier with similarity classification rules. The rules are used to test the similarity of signal patterns. A combination of a genetic algorithm and a neural network is used to find the best rules for the decision tree. This combination provides powerful classification capabilities with great tuning flexibility for either performance or cost-efficiency. Learning techniques are employed to set the genetic algorithm global parameters and to obtain training data for the neural network.
机译:在本文中,我们展示了如何将遗传算法和神经网络相结合来构建高性能信号模式分类器(GNSPC)。信号模式是许多基于传感器的系统所固有的。 GNSPC的目标是区分具有低分类成本和高分类性能的大量信号模式。尽管使用纯信号模式构建分类器,但通过对噪声信号模式进行正确分类来衡量分类性能。 GNSPC基本上是具有相似性分类规则的决策树分类器。该规则用于测试信号模式的相似性。遗传算法和神经网络的组合被用来为决策树找到最佳规则。这种组合提供了强大的分类功能,并具有极大的调整灵活性,可提高性能或降低成本。学习技术用于设置遗传算法的全局参数,并获得神经网络的训练数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号