首页> 外文期刊>Neurocomputing >Computing with inter-spike interval codes in networks of integrate and fire neurons
【24h】

Computing with inter-spike interval codes in networks of integrate and fire neurons

机译:在整合和触发神经元网络中使用峰值间间隔代码进行计算

获取原文
获取原文并翻译 | 示例

摘要

Information encoding in spikes and computations performed by spiking neurons are two sides of the same coin and should be consistent with each other. This study uses this consistency requirement to derive some new results for inter-spike interval (ISI) coding in networks of integrate and fire (IF) neurons. Our analysis shows that such a model can carry out useful computations and that it does also account for variability in spike timing as observed in cortical neurons. Our general result is that IF type neurons, though highly nonlinear, perform a simple linear weighted sum operation of ISI coded quantities. Further, we derive bounds on the variation of ISIs that occur in the model although the neurons are deterministic. We also derive useful estimates of the maximum processing speed in a hierarchical network.
机译:尖峰中的信息编码和尖峰神经元执行的计算是同一枚硬币的两侧,应彼此一致。这项研究使用此一致性要求来为整合和发射(IF)神经元网络的钉间间隔(ISI)编码得出一些新结果。我们的分析表明,这种模型可以执行有用的计算,并且确实可以说明在皮层神经元中观察到的尖峰时序的变化。我们的总体结果是,尽管IF型神经元是高度非线性的,但它会执行ISI编码量的简单线性加权和运算。此外,尽管神经元是确定性的,但我们推导了模型中发生的ISI变化的界限。我们还可以得出有关分层网络中最大处理速度的有用估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号