首页> 外文期刊>Neurocomputing >Mold temperature control of a rubber injection-molding machine by TSK-type recurrent neural fuzzy network
【24h】

Mold temperature control of a rubber injection-molding machine by TSK-type recurrent neural fuzzy network

机译:基于TSK型递归神经网络的注胶机模具温度控制

获取原文
获取原文并翻译 | 示例

摘要

Practical mold temperature control of a rubber injection-molding machine is studied in this paper. The controller used is a recurrent fuzzy network called Takagi-Sugeno-Kang (TSK)-type recurrent fuzzy network (TRFN), which is characterized by its recurrent structure, on-line structure and parameter learning. Due to the powerful learning ability of TRFN, a simple controller design scheme using direct inverse configuration is proposed. With recurrent structure in TRFN, no a priori knowledge of the molding machine order is required. The designed TRFN controller performs well even if the sampling interval is different from the original one used for training. The design of TRFN consists of off-line and on-line training. For off-line learning, structure and parameter of TRFN are learned, and the consequent part parameters are tuned by Kalman filter algorithm. On-line learning is performed to fine tune the consequent parameters of TRFN and achieve a better control performance with the use a simple gradient descent algorithm. Practical experiments and comparisons with other types of controllers demonstrate the performance of the proposed TRFN controller.
机译:本文研究了橡胶注射成型机的实用模具温度控制。所使用的控制器是称为Takagi-Sugeno-Kang(TSK)型递归模糊网络(TRFN)的递归模糊网络,其特征在于其递归结构,在线结构和参数学习。由于TRFN的强大学习能力,提出了一种使用直接逆配置的简单控制器设计方案。对于TRFN中的循环结构,不需要先验知识即可了解成型机的顺序。即使采样间隔与用于训练的原始采样间隔不同,设计的TRFN控制器也可以发挥良好的性能。 TRFN的设计包括离线和在线培训。为了进行离线学习,需要学习TRFN的结构和参数,然后通过卡尔曼滤波算法对零件参数进行调整。通过使用简单的梯度下降算法,可以执行在线学习来微调TRFN的后续参数并获得更好的控制性能。实际实验和与其他类型控制器的比较证明了所提出的TRFN控制器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号