首页> 外文期刊>Neurocomputing >The effect of different basis functions on a radial basis function network for time series prediction: A comparative study
【24h】

The effect of different basis functions on a radial basis function network for time series prediction: A comparative study

机译:不同基函数对径向基函数网络的时间序列预测的影响:比较研究

获取原文
获取原文并翻译 | 示例

摘要

Many applications using radial basis function (RBF) networks for time series prediction utilise only one or two basis functions; the most popular being the Gaussian function. This function may not always be appropriate and the purpose of this paper is to demonstrate the variation of test set error between six recognised basis functions. The tests were carried out on the Mackey-Glass chaotic time series, Box-Jenkins furnace data and flood prediction data sets for the Rivers Amber and Mole, UK. Each RBF network was trained using a two-stage approach, utilising the k-means clustering algorithm for the first stage and singular value decomposition for the second stage. For this type of network configuration the results indicate that the choice of basis function (and, where appropriate, basis width parameter) is data set dependent and evaluating all recognised basis functions suitable for RBF networks is advantageous.
机译:使用径向基函数(RBF)网络进行时间序列预测的许多应用程序仅利用一个或两个基函数。最受欢迎的是高斯函数。此功能可能并不总是合适的,本文的目的是证明六个公认的基函数之间的测试设置误差的变化。测试是针对英国安伯斯河和莫尔河的Mackey-Glass混沌时间序列,Box-Jenkins炉数据和洪水预报数据集进行的。每个RBF网络使用两阶段方法进行训练,第一阶段使用k-means聚类算法,第二阶段使用奇异值分解。对于这种类型的网络配置,结果表明,基础函数(以及适当时基础宽度参数)的选择取决于数据集,并且评估适用于RBF网络的所有公认基础函数都是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号