首页> 外文期刊>Neurocomputing >Sequence-similarity kernels for SVMs to detect anomalies in system calls
【24h】

Sequence-similarity kernels for SVMs to detect anomalies in system calls

机译:SVM的序列相似性内核可检测系统调用中的异常

获取原文
获取原文并翻译 | 示例

摘要

In intrusion detection systems (IDSs), short sequences of system calls executed by running programs can be used as evidence to detect anomalies. In this paper, one-class support vector machines (SVMs) using sequence-similarity kernels are adopted as the anomaly detectors. Edit distance-based kernel and common subsequence-based kernel are proposed to utilize the sequence information in the detection. Algorithms for efficient computation of the kernels are derived with the techniques of dynamic programming and bit-parallelism. The experimental results indicate that the proposed kernels can significantly outperform the standard RBF kernel.
机译:在入侵检测系统(IDS)中,可以将正在运行的程序执行的简短系统调用序列用作检测异常的证据。在本文中,采用序列相似核的一类支持向量机(SVM)作为异常检测器。提出了基于编辑距离的核和基于公共子序列的核,以在检测中利用序列信息。利用动态编程和位并行技术推导了有效计算内核的算法。实验结果表明,提出的内核可以明显优于标准RBF内核。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号