首页> 外文期刊>Neurocomputing >Two-directional Maximum Scatter Difference Discriminant Analysis For Face Recognition
【24h】

Two-directional Maximum Scatter Difference Discriminant Analysis For Face Recognition

机译:人脸识别的双向最大散射差异判别分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel method for image feature extraction. This method combines the ideas of two-dimensional principal component analysis and two-dimensional maximum scatter difference and which can directly extracts the optimal projective vectors from 2D image matrices rather than image vectors based on the scatter difference criterion. The proposed method not only avoids the singularity problem frequently occurred in the classical Fisher discriminant analysis due to the small sample size, but also saves much computational time. In addition, the proposed method can simultaneously make use of the discriminant information and descriptive information of the image. Experiments conducted on FERET, and ORL face databases demonstrate the effectiveness of the proposed method.
机译:在本文中,我们提出了一种新的图像特征提取方法。该方法结合了二维主成分分析和二维最大散度差的思想,可以直接从2D图像矩阵中提取最优投影矢量,而不是基于散度差准则的图像矢量。所提出的方法不仅避免了由于样本量小而在经典Fisher判别分析中经常发生的奇异性问题,而且节省了很多计算时间。另外,提出的方法可以同时利用图像的判别信息和描述信息。在FERET和ORL人脸数据库上进行的实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号