首页> 外文期刊>Neurocomputing >Neighborhood based modified backpropagation algorithm using adaptive learning parameters for training feedforward neural networks
【24h】

Neighborhood based modified backpropagation algorithm using adaptive learning parameters for training feedforward neural networks

机译:基于邻域的改进后向传播算法,自适应学习参数训练前馈神经网络

获取原文
获取原文并翻译 | 示例

摘要

The major drawbacks of backpropagation algorithm are local minima and slow convergence. This paper presents an efficient technique ANMBP for training single hidden layer neural network to improve convergence speed and to escape from local minima. The algorithm is based on modified backpropagation algorithm in neighborhood based neural network by replacing fixed learning parameters with adaptive learning parameters. The developed learning algorithm is applied to several problems. In all the problems, the proposed algorithm outperform well.
机译:反向传播算法的主要缺点是局部极小和收敛慢。本文提出了一种有效的技术ANMBP,用于训练单隐藏层神经网络,以提高收敛速度并摆脱局部极小值。该算法基于邻域神经网络中的改进的反向传播算法,通过将自适应学习参数替换为固定学习参数。所开发的学习算法被应用于几个问题。在所有问题中,提出的算法都表现出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号