首页> 外文期刊>Neurocomputing >Using relevance feedback with short-term memory for content-based spine X-ray image retrieval
【24h】

Using relevance feedback with short-term memory for content-based spine X-ray image retrieval

机译:使用具有短期记忆的相关性反馈进行基于内容的脊柱X射线图像检索

获取原文
获取原文并翻译 | 示例

摘要

Managing large medical image databases has become a challenging task as more medical images are produced and stored in digital format. Computer-aided decision support for content-based image retrieval (CBIR) is an essential tool for medical image management. This paper presents a novel hybrid relevance feedback (RF) system for shape-based retrieval of spine X-ray images. A new shape similarity measure that considers both whole shape and partial shape matching is presented. The proposed RF architecture includes separate retrieval and feedback modes to solicit user's opinion for refining retrieval results. A unique short-term memory approach is implemented to avoid repeated request for user's feedback on the same, already approved, and retrieved relevant images. An automatic weight updating scheme is developed to present the images on which it is best for the user to provide feedback. Incorporating all these unique features, the proposed RF retrieval system is able to reduce the gap between high-level human visual perception and low-level computerized features. Experimental results show overall retrieval accuracy improvement of 22.0% and 17.5% after the second feedback iteration for retrieving spine X-ray images with similar osteophytes severity and type, respectively.
机译:随着越来越多的医学图像以数字格式产生和存储,管理大型医学图像数据库已成为一项具有挑战性的任务。基于内容的图像检索(CBIR)的计算机辅助决策支持是医学图像管理的重要工具。本文提出了一种新颖的混合相关性反馈(RF)系统,用于基于形状的脊柱X射线图像检索。提出了一种同时考虑整体形状和部分形状匹配的形状相似性度量。所提出的RF体系结构包括单独的检索和反馈模式,以征求用户的意见以完善检索结果。一种独特的短期记忆方法可以避免重复请求用户对相同,已批准和检索到的相关图像进行反馈。开发了一种自动权重更新方案来呈现最适合用户提供反馈的图像。结合所有这些独特功能,所提出的RF检索系统能够缩小高级人类视觉感知与低级计算机化功能之间的差距。实验结果表明,第二次反馈迭代后,分别检索具有相似骨赘严重性和类型的脊柱X射线图像,整体检索准确性提高了22.0%和17.5%。

著录项

  • 来源
    《Neurocomputing》 |2009年第12期|2259-2269|共11页
  • 作者单位

    Brigham Young University, Department of Electrical and Computer Engineering, Provo, UT, USA;

    Brigham Young University, Department of Electrical and Computer Engineering, Provo, UT, USA;

    Lister Hill National Center for Biomedkal Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA;

    Lister Hill National Center for Biomedkal Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA;

    Brigham Young University, Department of Electrical and Computer Engineering, Provo, UT, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    relevance feedback; content-based image retrieval; spine x-ray; shape matching; osteophytes;

    机译:相关性反馈;基于内容的图像检索;脊柱X射线形状匹配;骨赘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号